这是我最喜欢的几何谜题之一:你能否在纸上画一个钝角三角形,然后把它分割成若干个锐角三角形?令人难以置信的是,这竟然是可以办到的!继续看下去之前,大家不妨先自己想一会儿。
每次我在课堂上提出这个问题的时候,学生们总会疯狂而盲目地进行尝试。根据我的观察,绝大多数人都会先画一个不那么钝的钝角三角形(其实这本质上并不会简化我们的问题),然后作出一系列类似于图 1 的尝试,但最后都以失败告终。此时我往往会反复强调:要有方法啊,要有方法!首先,想必很多人已经注意到了,我们必须在钝角里引出一条线(如图 2 所示),这样才能把钝角给消除掉。接下来,则是很少有人意识到的一点:我们不能让这条线一直延伸到对边,否则原三角形将会被分成一个锐角三角形和一个钝角三角形(或者两个直角三角形),这并不能解决根本问题。也就是说,这条线在到达对边前就必须得分岔。最后一个关键的问题就是,分成几岔?显然,分成三岔(如图 3 所示)是不够的,因为这样只能把一个周角分成四份,它们不可能都是锐角。为了让所有的角都是锐角,我们至少要让这条线分成四岔(如图 4 所示)。最后,再把一些没有连起来的点连起来,我们就得到一个像模像样的答案了(如图 5 所示)。
有的读者或许会说,等等,等等,你怎么敢肯定,图 5 中的每个小三角形都是锐角三角形呢?其实,我也不敢肯定。不过,我并没有说图 5 就是最终的答案。为了证明确实有一个钝角三角形能被分成若干个锐角三角形,我们需要给出一个确凿的、能供他人进行验证的例子。图 5 并不是一个确凿的例子,但它给我们提供了构造这种例子的思路,或者更贴切地说,构造这种例子的模板。借助这个模板,我们很容易得到下面这种构造方案。
如图,首先,画一个正五边形 ADEFG 。然后,找出它的中心 O ,将它分别与 A 、 D 、 E 、 F 、 G 相连。最后,延长 AD 和 FE 并交于点 B ,延长 AG 和 EF 并交于点 C 。那么,整个大三角形 ABC 将会成为一个顶角为 108° 的等腰三角形。这就是一个绝对让人信服的例子,我们能精确地算出这里面的每个小三角形的每个内角的度数,从而说明每个小三角形的确都是锐角三角形。
那么,能否把任意一个钝角三角形都分割成若干个锐角三角形呢?这下子,问题就变得复杂得多了。为了给出一个肯定的答案,我们必须想出一种能够适用于所有钝角三角形的通用分割方案,并且证明由此产生的小三角形确实都是锐角三角形。这个有名的问题最早出现在 1960 年 3 月的 The American Mathematical Monthly 上,同年 11 月,美国的一位中学数学老师 Wallace Manheimer 给出了下面这个解答。
如图,假设 △ABC 中, ∠BAC 是钝角。作出 △ABC 的内心 I 以及内切圆,将 BI 、 CI 与圆的交点分别记作 M 、 N 。过点 M 作圆的切线,分别与 AB 、 BC 交于 D 、 E ;过点 N 作圆的切线,分别与 AC 、 BC 交于 G 、 F 。最后,把 D 、 E 、 F 、 G 都和内心 I 相连,我们就把整个大三角形分成了 7 个小三角形。
现在,我们来证明,这些小三角形都是锐角三角形。由于圆的半径垂直于切线,因此 BI⊥DE ;同时, BI 又是 ∠B 的角平分线,因此 △BDE 就是一个等腰三角形。等腰三角形的两个底角一定都是锐角,而这个等腰三角形的顶角 ∠B 也是一个锐角,因此它就是一个锐角三角形。类似地, △CGF 也是一个锐角三角形。另外,五边形 ADEFG 的每个角都是钝角,而容易看出 AI 、 DI 、 EI 、 FI 、 GI 正好都是这些钝角的角平分线,它们把每个钝角都分成了两个大于 45 度的锐角。然而,如果一个三角形有两个大于 45 度的锐角,这个三角形就一定是锐角三角形。因此,五边形 ADEFG 里的五个小三角形也都是锐角三角形了。这样,我们便得到了一种把任意钝角三角形分成 7 个小锐角三角形的方法。
1961 年,美国数学家 Verner Hoggatt Jr. 在 The American Mathematical Monthly 上发表了一篇论文,给出了一个更出人意料的结论:不但任意一个钝角三角形都能被分割成若干个锐角三角形,而且任意一个钝角三角形都能被分割成若干个等腰锐角三角形(即使这个钝角三角形本身不是等腰的)!让我们来看一看他是怎么做到的。
如图,仍然假设 △ABC 中, ∠BAC 是钝角。还是作出 △ABC 的内心 I ,还是以 I 为圆心,不过这一次,让我们以 IA 为半径作圆。这个圆一定会和 △ABC 交于另外四个点,不妨依次记作 D 、 E 、 F 、 G (注意,这四个交点为什么一定存在,这是需要严格说明的,不过这里我们暂且略去)。显然, IA = ID = IE = IF = IG ,因而圆里的五个小三角形都是等腰三角形。过 I 作三角形三边的垂线段 IH1 、 IH2 、 IH3 ,由于内心 I 到三角形三边的距离都相等,因此 IH1 = IH2 = IH3 。那么, △IAD 、 △IAG 、 △IEF 就成为了这么一组等腰三角形,它们拥有相同的腰长,并且底边上的高也都相等。由此可以推出,它们是一组全等三角形。另外,容易证明 △BIH1 和 △BIH3 全等,于是 BH1 = BH3 ;同时, EH1 也是等于 DH3 的,因而 BE 是等于 BD 的,可见 △BDE 是一个以 B 为顶点的等腰三角形。根据同样的道理, △CFG 也是一个以 C 为顶点的等腰三角形。由此可知,图中的所有小三角形都是等腰三角形。
不过,为什么每个小三角形都是锐角三角形呢?别忘了,等腰三角形的两个底角一定都是锐角,因此,我们只需要说明每个小三角形的顶角也都是锐角就行了。 ∠B 和 ∠C 都是锐角,因而 △BDE 和 △CFG 都是锐角三角形了。不难算出, ∠AID 和 ∠AIG 都等于 180° – ∠BAC ,因而 △IAD 和 △IAG 也都是锐角三角形了。 △IEF 和它俩全等,自然也是一个锐角三角形。那么, △IDE 和 △IFG 呢?仔细算一算你会发现, ∠DIE = ∠BAC – ∠B , ∠FIG = ∠BAC – ∠C ,我们不能保证它们都是锐角。因此,最终我们只得到了一个暂时还不太完美的结果:如果三角形 △ABC 中, ∠A 是钝角,并且 ∠A – ∠B 和 ∠A – ∠C 都小于 90°,那么我们就可以把它分割成 7 个等腰锐角三角形。
如果 ∠A – ∠B 和 ∠A – ∠C 当中至少有一个大于等于 90° ,分割方案就会失效,这时又该怎么办呢? Verner Hoggatt Jr. 想到了极其聪明的一招。如图,仍然假设 ∠BAC 是钝角。剩下的两个角 ∠B 和 ∠C 都是锐角。不妨假设其中 ∠B ≤ ∠C 。我们先在 BC 上截取 BD ,使得 BD = BA (由于大角对大边, BC > BA ,因此这是一定能办到的)。 △BAD 便成了一个以 B 为顶点的等腰三角形。由于顶角 ∠B 是锐角,因而 △BAD 是锐角三角形。有人或许会说,刚才不是说过,这样不能解决根本问题吗? △DAC 仍然是一个钝角三角形呀?不过,这次就不一样了: △DAC 将会满足, ∠1 – ∠2 和 ∠1 – ∠3 都小于 90° !这是因为:
∠1 – ∠2 = (180° – ∠4) – ∠2 = (180° – ∠5) – ∠2 = 180° – (∠5 + ∠2) = 180° – ∠BAC < 90°
并且由 ∠B ≤ ∠C 可知:
∠1 – ∠3 ≤ ∠1 – ∠B = (180° – ∠4) – ∠B = 180° – (∠4 + ∠B) = ∠5 < 90°
套用刚才的分割方案,我们就可以把 △DAC 分成 7 个等腰锐角三角形,从而把整个三角形 △ABC 分成 8 个等腰锐角三角形了。到此为止, Verner Hoggatt Jr. 就完整地证明了,任意一个钝角三角形都可以被分成最多 8 个等腰锐角三角形。
从最初的问题出发,我们还可以提出很多其他的扩展问题。比方说,一个正方形最少能被分成多少个锐角三角形?数学趣题大师 Martin Gardner 曾经考虑过这个问题。他“想了好几天,一度以为分成 9 个是最少的,然后就突然想到了一种分成 8 个的方法”,如上图所示。他觉得 8 个锐角三角形应该是最少的了,但却不能证明这一点。随后,数学圈子里出现了好几个严密程度不同的证明。值得一提的是,这个问题还曾经作为一道题目,出现在了 1967 年的 IMO 候选题里。
同样地,我们也可以问,一个正方形最少能被分成多少个等腰的锐角三角形?我们可以先像上图那样把正方形分成四个等腰三角形。其中三个等腰三角形已经是锐角三角形了,利用 Verner Hoggatt Jr. 的方法则可以把最下面那个钝角三角形分成 8 个等腰锐角三角形,于是最终把正方形分成了 11 个等腰锐角三角形。然而,注意到最下面那个钝角三角形其实本来就是等腰的,这对于我们来说非常有利;或许把它分成等腰锐角三角形时,分成 8 个并不是必需的。事实上,利用下图所示的方法,我们可以把它分成 7 个等腰锐角三角形,因而最终把正方形分成了 10 个等腰锐角三角形。不过, 10 个究竟是不是最少的,这似乎还有待进一步探讨。
类似地,对于任意矩形,或者任意凸四边形,或者任意四边形,或者任意 n 边形来说,如何把它们分成尽可能少的锐角三角形,或者把它们分成尽可能少的等腰锐角三角形,这些问题都还有待继续研究。在计算机图形处理中,我们往往需要对图形进行三角剖分;如果所有三角形都是锐角三角形的话,这会给我们带来很多有用的性质。因此,直到现在,人们仍然有足够的动机和热情去研究图形的锐角三角形剖分。关于最近几年这方面的一些进展以及仍然有待解决的问题,可以参见 Carol Zamfirescu 的这篇论文: Survey of two-dimensional acute triangulations 。
呵呵,终于更新了
板凳…话说第一个问题小学就听说过,没想到有这么多变化…
很漂亮的结果,也很有趣。
樓主博客的圖是用什麼工具畫出來的?
大神关于M序列构造原理的问题,真是太难理解了,我觉得好有挑战性!!
“每次我在课堂上提出这个问题的时候”
matrix在当老师了么?
matrix67,能否写一篇通俗易懂的crc校验的文章啊,感觉网上的都没写到点上
能否写一篇通俗易懂的crc校验算法啊,网上写的都没写到点子上。
我的错觉?怎么感觉M神之前发过类似的博文?也是划分三角形的是什么来着……
我怎么记得中学老师好像讲过,一个钝角三角形不能分割成若干个锐角三角形呢?图2中伸出来的那根线长度是否是一个固定值?
膜拜~
太长,没看完,但我看出了些端倪。中间一个点周围引出四条线时,分成四个角,平均为90°,引5条线,分5个角,平均72°,才有可能都是锐角。一条线上从一点要引出3条线,平均60°,才可能都是锐角。
非常漂亮的证明啊
膜拜
这个问题很有趣,aha!
这个有没有参考文献呢?谢谢。
Hi there to every body, it’s my first visit of this blog; this web site carries remarkable
and in fact fine material for visitors.
Here is my blog Game Slot
Hi to every body, it’s my first go to see of this webpage; this blog includes awesome and actually good material in favor of readers.