Heron 公式是一个已知三角形三边长便能直接求出其面积的经典公式。把三角形的三边长分别记作 a 、 b 、 c ,令三角形的半周长 p = (a + b + c) / 2 ,则三角形的面积可以用 Heron 公式 S = √p(p – a)(p – b)(p – c) 求出。如果把 p = (a + b + c) / 2 代入式子,得到的公式其实也挺对称的: S = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。
现在,我们把这个公式看作是一个关于 c 的函数: f(c) = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。它的导数是多少?
注意到,利用平方差公式,根号内的式子可以进一步整理为 ((a + b)2 – c2)(c2 – (a – b)2) ,它的导数是 – 2c(c2 – (a – b)2) + 2c((a + b)2 – c2) = 4c(a2 + b2 – c2) 。因而,整个原函数的导数就是 c(a2 + b2 – c2) / (2 · √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) ) 。
有趣的是,当 a 、 b 、 c 满足勾股定理的关系 a2 + b2 = c2 时,导数值正好为 0 。这是为什么? Heron 公式的导数的零点和勾股定理有什么联系呢?
假设一个三角形其中两边的长度已经固定,分别为 a 和 b 。但是,这个三角形的第三条边 c 是不确定的,因此整个三角形是活动的,三角形的面积也就成了一个关于 c 的函数 f(c) 。其中, c 的取值范围是从 |a – b| 到 a + b ,同时函数值从 0 开始逐渐增大,最后又变回 0 。而 f'(c) = 0 则给出了三角形面积达到极大时的情形。什么时候三角形的面积达到极大呢?
如图,我们把 b 水平放置,并考虑 a 绕着它们的公共端点转动。显然,当 a 、 b 成直角时,三角形的高 h 最大,因而整个面积达到极大,此时 a2 + b2 = c2 ,这正是 f'(c) = 0 的一个解。
真正神奇的是,我们完全有可能用这种方法,反过来去证明勾股定理!与此有关的详细讨论,可以参见 http://www.cut-the-knot.org/pythagoras/HeronsDerivative.shtml
SSSSSSSSSSFFFFFFFFFFFFFFFFFFFFf
沙发
不过求导和海伦公式本身很有可能已经引用到了勾股定理,造成循环证明
海伦公式本身就跟勾股定理有密不可分的联系,不少海伦公式的证明都是基于勾股定理的基础之上的——直接使用勾股定理,或者建立在更高级的三角恒等式之上。
所以也许这里的结论是两个定理等价?没有谁比谁强。
唯一能看懂的一遍文章 汗~~
呵呵
数学的神奇啊,一些东西的内在联系。
海伦公式本来就和余弦定理等价,而勾股定理只是余弦定理的特殊情形
证明海伦公式用到了勾股定理
勾股定理只是形式上属于余弦定理的特例
但是勾股定理有其他不使用余弦定理的证明方法
他们的从属关系难以定论~
这应该是说当a,b固定的时候,如果a,b和c组成一个直角三角形时面积最大。这个正好和S=a*b*sinx不谋而合。
推荐使用mathjax来渲染公式~
唯一能看懂的一遍文章 汗~~
———
同感
数学的神奇啊,一些东西的内在联系