有这么两个八面体,它们是由一组相同的三角形面组成的,不过一个是凸多面体,一个是凹多面体。这两个多面体的体积哪个更大?
不可思议的是,真的就有这么两个八面体,凹的那个比凸的那个更大一些。 2002 年, S. N. Mikhalev 首次发现了这样一对八面体,其中凸多面体的六个顶点分别为
N(0, 0, 1),A(10, 1, 0),B(0, 6, 0),C(-10, 1, 0),D(0, -10, 0),S(0, 0, -1)
凹多面体的六个顶点则为
N(0, 0, √61/3),A(√71, 4√2/3, 0),B(0, -5√2/3, 0),C(-√71, 4√2/3, 0),D(0, -11√2/3, 0),S(0, 0, -√61/3)
感兴趣的读者可以自己验证一下,它们的对应棱确实都是一样长的,并且后者的体积确实比前者大。我用 Mathematica 画了一下,两个多面体大致是这样:
来源:http://www.cut-the-knot.org/Curriculum/Geometry/Polyhedra/Mikhalev.shtml
SF?
板凳?
地板?
地板…
只有这一组吗?这之后有什么规律?
那个凹八面体的体积是这八个面所能组成的八面体中体积最大的吗?
这个很好理解啊……已知八面体的所有棱是不能确定它的形状的,有无数种满足条件的八面体……凸的里面找个小的,凹的里面找个大的不就成了
so what?
67,在你的站里逛了4天,觉得高中数学都白学了-_-
这个太神奇了,谢谢分享
trif 说的对,还有比这个凹多面体大的凸多面体
这个很简单吧,就想凸多边形的面积一定比凹多边形大么?看你摆成成什么形状了。凸多边形的面积可以无穷接近0。
@trif
原文说的是相同的面,不是相同的棱,这个……还是有区别的吧?
很好的文章。想知道你是怎么用mathematica做出这样的gif文件的?能否贴个完整的代码?多谢作者matrix67!
@matrix67: 怎么不见回答呢?
我有折纸,谁要?
en 蛮不错。
这个太神奇了,谢谢分享
I loved as much aas you’ll receive carrie out ight here. Thhe sketch iss attractive, your authored matedrial stylish.
nonetheless, you cokmand geet got an edginess over thaat you wish bbe delivering the following.
unwell unquestionably come further formerly again as exacly the same nearrly vry often inside casde yyou shield
this hike.
It’s difficult tto find experienced people in this paricular topic, but you seem like yoou now what you’re talking about!
Thanks
I used to bbe reclmmended this webb site viia mmy cousin. I am no longer
certain whether orr not this puhblish iis writen viaa him aas nobody else recognize such particular aboit my difficulty.
Youu aree incredible! Thanks!
I aam curious to fiknd out what blog platforrm you hwve beewn working
with? I’m experiencing some minor security probloems witfh my
latest site aand I’d like to ffind something more safeguarded.
Do you have any solutions?
https://bit.ly/3dcqSIw
Itss like you read my mind! You seem too know a lot about this, like yyou wrote the book in iit oor
something. I think that you can do with somje pics tto drijve tthe message
home a little bit, but other han that, this is wonderful
blog. A great read. I’ll certainly be back.
Very nice article. I certainly appreciate thi website. Keeep writing!
Do you have anny video oof that? I’d wwant to find oout some additional information.
Thankls for skme other fantastic post. Thhe
plqce else mmay anybody get that type of information in such
a perfect approach of writing? I’ve a presentation next week,
and I amm aat thee looik foor sucxh information.
Whhy peokple syill uuse too read news papes when iin his technologicasl
world everything iis accewsible oon web?
I just like the hellpful iformation youu supply in yolur articles.
I will bookmark yojr weblog andd take a loook att
oncfe more right here regularly. I amm slightly certakn I will bbe informed a lot of new
stuff proper right here! Bestt oof lucdk for the
next!
Fastidious replies in return of this question with solid arguments and
describing the whole thing about that.
I like the valuable information you provide in your articles.
I’ll bookmark your weblog and check again here regularly.
I’m quite certain I’ll learn many new stuff right here!
Good luck for the next!
Attractive section of content. I just stumbled upon your
web site and in accession capital to assert that I acquire in fact enjoyed account
your blog posts. Anyway I’ll be subscribing to your augment and even I
achievement you access consistently rapidly.