勾股定理有上百种证明,但其实它们都大同小异——无非是构造一组三角形和正方形并进行一系列变换。今天我看到了一个用圆面积来解释勾股定理的办法,颇有一些新意。
考虑直角三角形OAB绕着一个锐角顶点O旋转一周。顶点A的轨迹是一个半径为a的圆,顶点B的轨迹是一个半径为c的圆。那么,线段AB扫过的区域(一个圆环)的面积就应该是大圆面积减去小圆面积,即π(c^2-a^2)。如果我们能够有一种办法说明,线段AB扫过的面积正好是πb^2,我们就相当于得到了勾股定理的另一个证明。
利用微积分或许可以说明这一点,但这里有一个不算严格证明,但却非常直观有趣的想法。考虑线段AB扫过环形区域的过程,它事实上是由平移和旋转两部分叠加构成的——首先沿着圆的切线方向(即BA的方向)平移充分小的距离,然后旋转一个充分小的角度。但很显然,线段沿着自身的方向平移是不会产生面积的,因此线段AB实际扫过的面积就是它绕A点旋转一周的面积,即一个半径为b的圆。从图上看来这一点似乎很显然——上下两个图之间的粉色线条有“一一对应”的关系。这虽然不严密,却是一个很有意思的想法。
来源:http://www.cut-the-knot.org/Curriculum/Geometry/PythFromRing.shtml
沙发,小时候自己也想了若干种证明法,就是无法得知是否与前人的雷同。
坐板凳~ Google Reader 更新还是慢了…
牛~
不严密哎,真的怎么都感觉不严密哎……这咋好一一对应呢?
同感。这个转化对于我来说有点抽象 以至于感觉不太可靠。
不严密。从直观上看,如果不是直角三角形,比如说比直角略大一点,那么上面的分析似乎仍然成立,但事实上不是这样。
还是严密的,需要证明必须直角才能实现切线的平行移动不产生面积。
我也是从reader上来的, 把A所在的圆收缩到一个点上,然后就变成了下图.
其实有点问题。如果一开始不是直角三角形,难道也会得到a^2+b^2=c^2吗。
只是个想法
是不行啊。。如果∠OAB是钝角仍然能得到一样的结论。。
不是直角三角形,线段的“平移”方向就不是在与线段平行的方向了。。。。
我记得我小学时候一年的奥数题就有这个
对于一般的三角形,把线段“平移”对面积的影响就是余弦定理中-2absinC的那一项吧。
对于一般的三角形,线段的“平移”对面积增加的量就对应于余弦定理中-2absinC吧。。
楼上说得对。那这个证明的问题就只在这个“一一对应”不严密上了。我再查查相关资料吧。
让圆环域和圆域中的点按原图的意思,建立起点到点的双射函数,用双重积分换元法,把缩放因子求出为1即可.要严格还是微积分.
呵呵….好特别的证法..
很好很强大的证明
这个证法的逆推不是常用嘛…
太强悍了。。。………………
但是。推算圆的面积需要勾股定理么?
直角三角型的话AB线段的旋转角就和OA线段的旋转角相等~
取某个特定时候的OA线段,之后它转过360,AB也相应的转了360,一一对应~
但不是直角三角形的话,AB线段的旋转角就和OA线段的旋转角不相等!
然后就不知道怎么办了~~~~~
求神牛解决~
AB 和OA 始终是垂直的,因此在OA 的切线的方向上不产生面积,只有旋转产生的面积,相当的合理
直接 微积分搞定他……
[[0-2pie]](1/2sinA*b^2) == pieb^2 == piec^2-piea^2
如果一开始不是直角三角形,难道也会得到a^2+b^2=c^2吗。
感觉上还算可以理解 如果是直角三角形 平移的距离和旋转的角度趋于0的话 就能恰好行成以a和c为半径的圆 如果不是直角三角形 形成的两个圆的半径就不是a和c 因为平移不是沿着切线方向进行的
感觉这个有点循环论证啊
圆的面积貌似积分里有勾股定理的?
After I originally left a comment I seem to have clicked the -Notify me when new comments are added- checkbox
and from now on whenever a comment is added I recieve
4 emails with the exact same comment. There has to be a means you are able to remove me
from that service? Many thanks!
A fixed-term ekployee can not be engaged foor far more
than two years beyond that, the employee’s ststus automaticalkly switches to complete-time status.
Feel free to visit myy blog; 유흥알바
I think that what you said made a great deal of sense.
But, what about this? what if you wrote a catchier post title?
I mean, I don’t want to tell you how to run your blog, however what if you
added a headline that makes people want more?
I mean 圆环面积公式与勾股定理 | Matrix67:
The Aha Moments is kinda vanilla. You could glance at Yahoo’s front page and see how they
create news titles to get people to click. You might add a video or a related pic or
two to grab people excited about everything’ve got to say.
In my opinion, it might make your posts a little livelier.
Based on your risk rating, your fee can be 1% to 5.00% of the loan quantity.
Heere is my web page –대환대출
Coupang Flex is a hiring technique for element-time delivery workers for e-commerce giant Coupang.
Also visit my site – 유흥알바
Korea’s Ministry of Employment and Labour (MOEL)
at some point signed agreements with 16 labour-sending countries.
Here is my web page; web site
You know how the pandemic has changed the paradigm of occasion management.
Here is my page … website
Yes, the RNG technique is supported in our lottery software options.
Look at my web site: 메가밀리언
Spain provides a wealth of lottedry games, the majority off which are operated
by Loterías y Apueatas del Esyado with the remaining
lotteries operated by the After and the Catalan government.
Feel free to visit my blog – 클레이파워볼
For over 20 years, Cashback Loans has served our neighbors in Los
Angeles with local payday loans and other economic services!
Here is my web blog: 무직자대출
The two powerhouses in digital ticketing and evewnt management have officially come
collectively.
Also visit my page … 메가밀리언
I’d like to find out more? I’d want to find out some additional information.
Terrific work! This is the kind of information that should
be shared around the net. Disgrace on the seek engines for now not positioning this submit upper!
Come on over and discuss with my site . Thank you =)
You can pick out from nuymerous table games, blackjack, poker or slos (more than 150 alternatives).
Also visit my web blog … 온라인바카라