从零开始学算法:十种排序算法介绍(上)

    今天我正式开始按照我的目录写我的OI心得了。我要把我所有学到的OI知识传给以后千千万万的OIer。以前写过的一些东西不重复写了,但我最后将会重新整理,使之成为一个完整的教程。
    按照我的目录,讲任何东西之前我都会先介绍时间复杂度的相关知识,以后动不动就会扯到这个东西。这个已经写过了,你可以在这里看到那篇又臭又长的文章。在讲排序算法的过程中,我们将始终围绕时间复杂度的内容进行说明。
    我把这篇文章称之为“从零开始学算法”,因为排序算法是最基础的算法,介绍算法时从各种排序算法入手是最好不过的了。

    给出n个数,怎样将它们从小到大排序?下面一口气讲三种常用的算法,它们是最简单的、最显然的、最容易想到的。选择排序(Selection Sort)是说,每次从数列中找出一个最小的数放到最前面来,再从剩下的n-1个数中选择一个最小的,不断做下去。插入排序(Insertion Sort)是,每次从数列中取一个还没有取出过的数,并按照大小关系插入到已经取出的数中使得已经取出的数仍然有序。冒泡排序(Bubble Sort)分为若干趟进行,每一趟排序从前往后比较每两个相邻的元素的大小(因此一趟排序要比较n-1对位置相邻的数)并在每次发现前面的那个数比紧接它后的数大时交换位置;进行足够多趟直到某一趟跑完后发现这一趟没有进行任何交换操作(最坏情况下要跑n-1趟,这种情况在最小的数位于给定数列的最后面时发生)。事实上,在第一趟冒泡结束后,最后面那个数肯定是最大的了,于是第二次只需要对前面n-1个数排序,这又将把这n-1个数中最小的数放到整个数列的倒数第二个位置。这样下去,冒泡排序第i趟结束后后面i个数都已经到位了,第i+1趟实际上只考虑前n-i个数(需要的比较次数比前面所说的n-1要小)。这相当于用数学归纳法证明了冒泡排序的正确性:实质与选择排序相同。上面的三个算法描述可能有点模糊了,没明白的话网上找资料,代码和动画演示遍地都是。

    这三种算法非常容易理解,因为我们生活当中经常在用。比如,班上的MM搞选美活动,有人叫我给所有MM排个名。我们通常会用选择排序,即先找出自己认为最漂亮的,然后找第二漂亮的,然后找第三漂亮的,不断找剩下的人中最满意的。打扑克牌时我们希望抓完牌后手上的牌是有序的,三个8挨在一起,后面紧接着两个9。这时,我们会使用插入排序,每次拿到一张牌后把它插入到手上的牌中适当的位置。什么时候我们会用冒泡排序呢?比如,体育课上从矮到高排队时,站队完毕后总会有人出来,比较挨着的两个人的身高,指挥到:你们俩调换一下,你们俩换一下。
    这是很有启发性的。这告诉我们,什么时候用什么排序最好。当人们渴望先知道排在前面的是谁时,我们用选择排序;当我们不断拿到新的数并想保持已有的数始终有序时,我们用插入排序;当给出的数列已经比较有序,只需要小幅度的调整一下时,我们用冒泡排序。

    我们来算一下最坏情况下三种算法各需要多少次比较和赋值操作。
    选择排序在第i次选择时赋值和比较都需要n-i次(在n-i+1个数中选一个出来作为当前最小值,其余n-i个数与当前最小值比较并不断更新当前最小值),然后需要一次赋值操作。总共需要n(n-1)/2次比较与n(n-1)/2+n次赋值。
    插入排序在第i次寻找插入位置时需要最多i-1次比较(从后往前找到第一个比待插入的数小的数,最坏情况发生在这个数是所有已经取出的数中最小的一个的时候),在已有数列中给新的数腾出位置需要i-1次赋值操作来实现,还需要两次赋值借助临时变量把新取出的数搬进搬出。也就是说,最坏情况下比较需要n(n-1)/2次,赋值需要n(n-1)/2+2n次。我这么写有点误导人,大家不要以为程序的实现用了两个数组哦,其实一个数组就够了,看看上面的演示就知道了。我只说算法,一般不写如何实现。学算法的都是强人,知道算法了都能写出一个漂亮的代码来。
    冒泡排序第i趟排序需要比较n-i次,n-1趟排序总共n(n-1)/2次。给出的序列逆序排列是最坏的情况,这时每一次比较都要进行交换操作。一次交换操作需要3次赋值实现,因此冒泡排序最坏情况下需要赋值3n(n-1)/2次。
    按照渐进复杂度理论,忽略所有的常数,三种排序的最坏情况下复杂度都是一样的:O(n^2)。但实际应用中三种排序的效率并不相同。实践证明(政治考试时每道大题都要用这四个字),插入排序是最快的(虽然最坏情况下与选择排序相当甚至更糟),因为每一次插入时寻找插入的位置多数情况只需要与已有数的一部分进行比较(你可能知道这还能二分)。你或许会说冒泡排序也可以在半路上完成,还没有跑到第n-1趟就已经有序。但冒泡排序的交换操作更费时,而插入排序中找到了插入的位置后移动操作只需要用赋值就能完成(你可能知道这还能用move)。本文后面将介绍的一种算法就利用插入排序的这些优势。

    我们证明了,三种排序方法在最坏情况下时间复杂度都是O(n^2)。但大家想过吗,这只是最坏情况下的。在很多时候,复杂度没有这么大,因为插入和冒泡在数列已经比较有序的情况下需要的操作远远低于n^2次(最好情况下甚至是线性的)。抛开选择排序不说(因为它的复杂度是“死”的,对于选择排序没有什么“好”的情况),我们下面探讨插入排序和冒泡排序在特定数据和平均情况下的复杂度。
    你会发现,如果把插入排序中的移动赋值操作看作是把当前取出的元素与前面取出的且比它大的数逐一交换,那插入排序和冒泡排序对数据的变动其实都是相邻元素的交换操作。下面我们说明,若只能对数列中相邻的数进行交换操作,如何计算使得n个数变得有序最少需要的交换次数。
    我们定义逆序对的概念。假设我们要把数列从小到大排序,一个逆序对是指的在原数列中,左边的某个数比右边的大。也就是说,如果找到了某个i和j使得i<j且Ai>Aj,我们就说我们找到了一个逆序对。比如说,数列3,1,4,2中有三个逆序对,而一个已经有序的数列逆序对个数为0。我们发现,交换两个相邻的数最多消除一个逆序对,且冒泡排序(或插入排序)中的一次交换恰好能消除一个逆序对。那么显然,原数列中有多少个逆序对冒泡排序(或插入排序)就需要多少次交换操作,这个操作次数不可能再少。
    若给出的n个数中有m个逆序对,插入排序的时间复杂度可以说是O(m+n)的,而冒泡排序不能这么说,因为冒泡排序有很多“无用”的比较(比较后没有交换),这些无用的比较超过了O(m+n)个。从这个意义上说,插入排序仍然更为优秀,因为冒泡排序的复杂度要受到它跑的趟数的制约。一个典型的例子是这样的数列:8, 2, 3, 4, 5, 6, 7, 1。在这样的输入数据下插入排序的优势非常明显,冒泡排序只能哭着喊上天不公。
    然而,我们并不想计算排序算法对于某个特定数据的效率。我们真正关心的是,对于所有可能出现的数据,算法的平均复杂度是多少。不用激动了,平均复杂度并不会低于平方。下面证明,两种算法的平均复杂度仍然是O(n^2)的。
    我们仅仅证明算法需要的交换次数平均为O(n^2)就足够了。前面已经说过,它们需要的交换次数与逆序对的个数相同。我们将证明,n个数的数列中逆序对个数平均O(n^2)个。
    计算的方法是十分巧妙的。如果把给出的数列反过来(从后往前倒过来写),你会发现原来的逆序对现在变成顺序的了,而原来所有的非逆序对现在都成逆序了。正反两个数列的逆序对个数加起来正好就是数列所有数对的个数,它等于n(n-1)/2。于是,平均每个数列有n(n-1)/4个逆序对。忽略常数,逆序对平均个数O(n^2)。
    上面的讨论启示我们,要想搞出一个复杂度低于平方级别的排序算法,我们需要想办法能把离得老远的两个数进行操作。

    人们想啊想啊想啊,怎么都想不出怎样才能搞出复杂度低于平方的算法。后来,英雄出现了,Donald Shell发明了一种新的算法,我们将证明它的复杂度最坏情况下也没有O(n^2) (似乎有人不喜欢研究正确性和复杂度的证明,我会用实例告诉大家,这些证明是非常有意思的)。他把这种算法叫做Shell增量排序算法(大家常说的希尔排序)。
    Shell排序算法依赖一种称之为“排序增量”的数列,不同的增量将导致不同的效率。假如我们对20个数进行排序,使用的增量为1,3,7。那么,我们首先对这20个数进行“7-排序”(7-sortedness)。所谓7-排序,就是按照位置除以7的余数分组进行排序。具体地说,我们将把在1、8、15三个位置上的数进行排序,将第2、9、16个数进行排序,依此类推。这样,对于任意一个数字k,单看A(k), A(k+7), A(k+14), …这些数是有序的。7-排序后,我们接着又进行一趟3-排序(别忘了我们使用的排序增量为1,3,7)。最后进行1-排序(即普通的排序)后整个Shell算法完成。看看我们的例子:

  3 7 9 0 5 1 6 8 4 2 0 6 1 5 7 3 4 9 8 2  <– 原数列
  3 3 2 0 5 1 5 7 4 4 0 6 1 6 8 7 9 9 8 2  <– 7-排序后
  0 0 1 1 2 2 3 3 4 4 5 6 5 6 8 7 7 9 8 9  <– 3-排序后
  0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9  <– 1-排序后(完成)

    在每一趟、每一组的排序中我们总是使用插入排序。仔细观察上面的例子你会发现是什么导致了Shell排序的高效。对,每一趟排序将使得数列部分有序,从而使得以后的插入排序很快找到插入位置。我们下面将紧紧围绕这一点来证明Shell排序算法的时间复杂度上界。
    只要排序增量的第一个数是1,Shell排序算法就是正确的。但是不同的增量将导致不同的时间复杂度。我们上面例子中的增量(1, 3, 7, 15, 31, …, 2^k-1)是使用最广泛的增量序列之一,可以证明使用这个增量的时间复杂度为O(n√n)。这个证明很简单,大家可以参看一些其它的资料,我们今天不证明它。今天我们证明,使用增量1, 2, 3, 4, 6, 8, 9, 12, 16, …, 2^p*3^q,时间复杂度为O(n*(log n)^2)。
    很显然,任何一个大于1的正整数都可以表示为2x+3y,其中x和y是非负整数。于是,如果一个数列已经是2-排序的且是3-排序的,那么对于此时数列中的每一个数A(i),它的左边比它大的只有可能是A(i-1)。A2绝对不可能比A12大,因为10可以表示为两个2和两个3的和,则A2<A4<A6<A9<A12。那么,在这个增量中的1-排序时每个数找插入位置只需要比较一次。一共有n个数,所以1-排序是O(n)的。事实上,这个增量中的2-排序也是O(n),因为在2-排序之前,这个数列已经是4-排序且6-排序过的,只看数列的奇数项或者偶数项(即单看每一组)的话就又成了刚才的样子。这个增量序列巧妙就巧妙在,如果我们要进行h-排序,那么它一定是2h-排序过且3h-排序过,于是处理每个数A(i)的插入时就只需要和A(i-h)进行比较。这个结论对于最开始几次(h值较大时)的h-排序同样成立,当2h、3h大于n时,按照定义,我们也可以认为数列是2h-排序和3h-排序的,这并不影响上述结论的正确性(你也可以认为h太大以致于排序时每一组里的数字不超过3个,属于常数级)。现在,这个增量中的每一趟排序都是O(n)的,我们只需要数一下一共跑了多少趟。也就是说,我们现在只需要知道小于n的数中有多少个数具有2^p*3^q的形式。要想2^p*3^q不超过n,p的取值最多O(log n)个,q的取值最多也是O(log n)个,两两组合的话共有O(logn*logn)种情况。于是,这样的增量排序需要跑O((log n)^2)趟,每一趟的复杂度O(n),总的复杂度为O(n*(log n)^2)。早就说过了,证明时间复杂度其实很有意思。
    我们自然会想,有没有能使复杂度降到O(nlogn)甚至更低的增量序列。很遗憾,现在没有任何迹象表明存在O(nlogn)的增量排序。但事实上,很多时候Shell排序的实际效率超过了O(nlogn)的排序算法。

    后面我们将介绍三种O(nlogn)的排序算法和三种线性时间的排序算法。最后我们将以外部排序和排序网络结束这一章节。

    很多人问到我关于转贴的问题。我欢迎除商业目的外任何形式的转贴(论坛、Blog、Wiki、个人网站、PodCast,甚至做成ppt、pdf),但一定要注明出处,最好保留原始链接。我的网站需要点反向链接才能在网络中生存下去,大家也都可以关注并且推广这个Blog。我一直支持cc版权协议,因此发现了文章中的问题或者想要补充什么东西尽管提出来,好让更多的人学习到好东西。我昨天看Blog上原来写的一些东西,居然连着发现了几个错误式子和错别字,好奇大家居然没有提出来。发现了问题真的要告诉我,即使格式有点问题也要说一下,决不能让它那么错着。另外有什么建议或想法也请说一下,我希望听到不同的声音不同的见解,好让我决定这类文章以后的发展方向。

Matrix67原创
转贴请注明出处

30 条评论

  • dd

    外部排序和排序网络在OI中有什么用吗?反正我是没研究过……

    回复:没有用。不过这并不一定是写给OIer的,在算法领域里还是有研究的价值

  • 逆铭

    顶~~blog上完成以后就可以学韩寒找出版社结集出版了~~

    回复:没想过……

  • hazy

    blog帅. 文章更好看:)

    回复:谢谢支持

  • Freeze

    我觉得排序在我的这本《数据结构》中就介绍得很详细.
    支持大牛以自己的语言表述出来

    回复:支持的人不少啊,我感谢你们

  • cyc

    人家说Matrix67是大牛,巨牛,仙牛,神牛,今天果然验证了。希望MATRIX67大牛能把字搞大一点,看起来舒服一些。[lol]
    谢谢你为全人类做得贡献。[handclap]

  • 1

    费解下..为什么选择排序的最坏情况赋值次数是N(n-1)/2+n呢?67大牛能给个标程吗?我看到的最好的都是+4n..

  • 1

    67牛能回个讲讲吗?什么选择排序的最坏情况赋值次数是N(n-1)/2+n呢?67大牛能给个标程吗?我看到的最好的都是+4n..

  • 1

    67牛能回个讲讲吗?什么选择排序的最坏情况赋值次数是N(n-1)/2+n呢?67大牛能给个标程吗?我看到的最好的都是+4n..难道有超级牛的代码可以做到?

  • dahe_1984

    回楼上:

    杂是4N啊,杂算的:

    我算是(n+2)(n-1)/2+(n-1)正好等于Matrix67的值

  • dahe_1984

    在已有数列中给新的数腾出位置需要i-1次赋值操作来实现,还需要两次赋值借助临时变量把新取出的数搬进搬出。也就是说,最坏情况下比较需要n(n-1)/2次,赋值需要n(n-1)/2+2n次;

    貌似一个变量就可以吧:把要插入的值取出放一个临时变量中;
               依次将插入点后的值后移;
               将临时变量的值插入/

  • RedField

    2-排序之后,数列一定还是3-排序的么?

  • Tylar

    你所叙述的冒泡算法和给出了图解严重不符.

  • jack

    我想问一下看到你的排序的那日志,我有个不明白。关键是数学水平不行,插入排序
    T(n)=O(n^2),合并排序是T(n)=O(nlgn),说在n比较小的时候插入排序比较快
    那我这么算n^2<nlgn,即n<lgn, 无解呀。只是说常数系数的原因。我实在不知道怎么解,希望能回答,

  • andone

    要找错,早说啊,刚看到一个错误,现在找不到了…

  • NoName

    选择排序的最坏情况赋值次数是N(n-1)/2+n应该是错的,该算法具体如下:
    *
    *输入:n个元素的数组A[1…n]
    *输出:按非降序排列的数组A[1…n]
    *
    *1.for i <- 1 to n-1
    *2. k <- i
    *3. for j <- i+1 to n
    *4. if A[j]<A[k] then k <- j
    *5. end for
    *6. if k!=i then 交换A[i]与A[k]
    *7.end for
    由于交换需要3次赋值,因此赋值的次数界于0到3(n-1)之间。

  • ryuuzaki

    博主相当强却不吝与人分享,赞!!!

  • ryuuzaki

    但对于不知道长度的序列,如可确定2^k-1的那个k呢?

  • K2

    请问大哥您是什么职业?

  • MC.Spring

    阅读此文,受益菲浅!

  • hehe

    仔细研读发现里面还是有点小错误,望作者也能够仔细的读几次,我相信你一定能够把错误都找出来的

  • gqqnbig

    “插入排序的时间复杂度可以说是O(m+n)”怎么理解?

  • 丸子

    关于插入算法的复杂度解释那段不妥吧,不可能存在既需要i-1次比较又需要i-1次赋值的情况,其实根本不存在最坏情况,每次插入,比较次数加赋值次数正好等于i-1.

  • zjjott

    好东西啊啊啊啊啊啊啊啊啊啊。。。。。。。。。。。看了好多遍了。。。。。。。。。。太喜欢了

  • 毛毛虫

    谢谢你的文章,给我带来很大的帮助。以后得关注你的文章了!

  • guest

    “于是,如果一个数列已经是2-排序的且是3-排序的,那么对于此时数列中 的每一个数A(i),它的左边比它大的只有可能是A(i-1)”
    我觉得这句话还是有很多中间的推导细节没有说清楚。我看了还是自己再推到了一下。对于初学者,估计这句话不容易看懂,得自己推导一遍。
    希望简单的图例更多一点。

  • leeprimer

    最开始的两个链接失效了

发表评论




Enter Captcha Here :