如果把 3 · n + 1 问题改为 3x · n + 1 问题

Collatz 猜想也叫做 3 · n + 1 问题。这可能是数学中最为世人所知的未解之谜。它是如此初等,连小学生都能听懂它的内容;但解决它却如此之难,以至于 Paul Erdős 曾说:“或许现在的数学还没准备好去解决这样的问题。”这究竟是一个什么样的问题呢?让我们来看一下 Collatz 猜想的叙述:

任意取一个正整数 n 。如果 n 是奇数,则把 n 变为 3 · n + 1 ;如果 n 是偶数,则把 n 变为 n/2 。不断重复操作,则最终一定会得到 1 。

举个例子,如果 n = 26 ,那么经过下面 10 步之后,它最终变为了 1 :

26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

Collatz 猜想说的就是,这个规律对于所有正整数 n 均是如此。这个问题看起来是如此简单,以至于无数的数学家都掉进了这个坑里。光从这个问题的众多别名,便能看出这个问题害人不浅: Collatz 猜想又叫做 Ulam 猜想、 Kakutani 问题、 Thwaites 猜想、 Hasse 算法、 Syracuse 问题……研究这个问题的人很多,解决这个问题的人却一个没有。后来,人们干脆把它叫做 3 · n + 1 问题,让哪个数学家也不沾光。

这个问题有多难呢?我们可以从下面的这个例子中略见一斑。虽然从 26 出发只消 10 步就能变成 1 ,但若换一个数,比如 27 ,情况就大不一样了:

27 → 82 → 41 → 124 → 62 → 31 → 94 → 47 → 142 → 71 → 214 → 107 → 322 → 161 → 484 → 242 → 121 → 364 → 182 → 91 → 274 → 137 → 412 → 206 → 103 → 310 → 155 → 466 → 233 → 700 → 350 → 175 → 526 → 263 → 790 → 395 → 1186 → 593 → 1780 → 890 → 445 → 1336 → 668 → 334 → 167 → 502 → 251 → 754 → 377 → 1132 → 566 → 283 → 850 → 425 → 1276 → 638 → 319 → 958 → 479 → 1438 → 719 → 2158 → 1079 → 3238 → 1619 → 4858 → 2429 → 7288 → 3644 → 1822 → 911 → 2734 → 1367 → 4102 → 2051 → 6154 → 3077 → 9232 → 4616 → 2308 → 1154 → 577 → 1732 → 866 → 433 → 1300 → 650 → 325 → 976 → 488 → 244 → 122 → 61 → 184 → 92 → 46 → 23 → 70 → 35 → 106 → 53 → 160 → 80 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

可见,当 n 的值不同时,从 n 变到 1 的路子是很没规律的。

有趣的是,如果我们把 Collatz 猜想中的乘以 3 改为乘以任意一个 3x (其中 x 的值可由你自由选择),那么 Collatz 猜想就是正确的了。下面我们就来证明这一点。

Read more…

26 个比较概率大小的问题

你的数学直觉怎么样?你能凭借直觉,迅速地判断出谁的概率大,谁的概率小吗?下面就是 26 个这样的问题。如果你感兴趣的话,你可以先扫一遍所有的问题,再逐一阅读答案,看看你猜对了多少。这篇文章很长,你可以考虑把它加入书签,每天看几个问题。

 

1.A 、 B 、 C 、 D 四人玩扑克牌游戏, A 、 C 两人同盟, B 、 D 两人同盟。将除去大小王的 52 张牌随机分发给四人(每人获得 13 张牌)后,下面哪种情况的可能性更大一些?

A.A 、 C 两人手中都没有梅花
B.A 、 C 两人手中囊括了所有的梅花
C.上述两种情况的出现概率相同

A 、 C 两人手中都没有梅花,等价于 B 、 D 两人手中囊括了所有的梅花,它的概率与 A 、 C 两人手中囊括所有梅花的概率相同。因此,这个问题的答案显然是 C 。

Read more…

趣题:如果每次只增加一个区域的话

著名的四色定理(four color theorem)告诉我们,如果一个地图由若干个连通区域构成(没有飞地),那么在给每个区域染色时,为了让相邻区域的颜色不同,最多只需要四种颜色就足够了。不过,这个结论成立有一个条件:整个地图已经事先确定了。如果我们每次只增加一个区域的话呢?具体地说,如果每次你给一个区域染色之后,我再画出下一个区域,并且之前已经染好颜色的区域不能再修改了,那么四种颜色还足够吗?这里,我们假设,在染色时,你总是遵循一个非常朴素的贪心策略:用第一个合法的颜色给每个新的区域染色。下面这个例子告诉我们,在这些假设下,四种颜色就不够了,有时五种颜色是必需的。

我们的问题就是,在这些假设下,五种颜色就一定够吗?有没有可能构造出某个情况,使得六种颜色是必需的?有没有可能构造出某个情况,使得七种颜色是必需的?

Read more…

趣题:用 26 次机会找出任意一张对方想要的牌

看守打算和 A 、 B 两名囚犯做一个游戏。首先,看守从一副牌中取出大小王,将剩余的 52 张牌洗好,并在桌子上从左至右地把它们摆成一排,每张牌都是正面朝上。然后,看守让囚犯 A 来到桌前,允许囚犯 A 观察牌面,并交换其中两张牌的位置。接着,看守将囚犯 A 关回牢房,把所有牌全都翻到背面朝上(但位置不变),让囚犯 B 来到桌前。看守随便报出一张牌的花色和点数(比如“梅花 3”),要求囚犯 B 找出这张牌。囚犯 B 每次可以翻开任意一张尚未翻开的牌,但一共只有 26 次机会。如果囚犯 B 在这 26 次机会之内找到了看守想要的牌,则两名囚犯赢得游戏,无罪释放;如果囚犯 B 翻开了 26 张牌之后,还没找到看守想要的牌,则两名囚犯输掉游戏,立即死刑。在整个游戏开始之前,两名囚犯可以商量一个策略;游戏开始后,两人就不能有任何其他形式的交流。果不其然,这又是一个关满了数学天才的监狱。两名囚犯碰头后,很快就商量出了一种必胜的策略。这种必胜的策略是什么?

Read more…