今天才知道,空壳星球的内部是没有重力的

    曾经想过要写一篇科幻小说,讲一种生活在空壳星球内表面的文明,如何发现自己的星球是圆的,如何成功地环游世界一周,又如何发现自己其实是在星球的内表面。今天我长出了一口气,幸好当初没写这样的文章,不然就闹笑话了。今天我才知道,空壳星球内部的人是不能居住在星球的内表面的,因为空壳星球内的任意一点都没有重力。

    这其实并不难理解。虽然脚下的土地离你更近,产生的重力作用更显著,但可惜这部分土地并不多。星球的更多部分将会位于你的头上,但可惜它们又离你太远了,影响也不会太大。近的部分太小,大的部分又太远,这两者很可能是一种平衡的状态。

Read more…

趣题:连接多个数字串时怎样避免歧义?

    今天碰上一个非常有意思的问题。有一条通信线路,每次可以发送一个由数字 0 到 9 组成的任意长的数字串。怎样巧妙地利用这条通信线路,构造一种一次能够发送两个数字串的协议?注意到,直接将两个数字串相连是不行的,因为这将会产生歧义。如果对方收到的数字串是 1234 ,他没法知道你发送的是数字串 12 和 34 ,还是数字串 123 和 4 ,抑或是 1 和 234。

    能否把第一个串的位数编码进去,比如把 12 和 34 编码成 21234 ,这样不就知道第一个数字串到哪儿截止了吗?不行,因为你不知道这个位数信息本身到哪儿截止,假如编码结果是 123456789012345 ,你就不知道第一个数字串是 1 位还是 12 位了。换一个思路,能否用几个非常特殊的数字当作分隔符呢?也不行,因为你要发送的数字串里有可能偏偏也包含了这几位数。怎么办呢?

Read more…

经典证明:Cantor集中的元素两两相加可以遍历[0,2]

    今天看到一个有趣的证明,来源在这里

      

    Cantor 集是一个简单而又神奇的分形图形。把 [0, 1] 三等分,挖去中间那一段(即挖去 (1/3, 2/3) ),然后把剩下两段也都分别进行三等分,并挖去各自中间的一段。这样无限地进行下去,最后得到的极限点集就是 Cantor 集了(上面那张图不是分割线,是 Cantor 集的一个示意图)。我们通常把 Cantor 集记作 C 。Cantor 集具有很多神奇的性质:它的 Lebesgue 测度为 0,但它却包含有不可数个点;它里面的每个点都不是孤点,但它却又是无处稠密的。你可以在这里看到一些具体的分析。

    Cantor 集还有很多其他的性质。若 A 、 B 是两个集合,定义 A + B = {a + b | a ∈ A 并且 b ∈ B} ,也就是 A 中的某个元素与 B 中的某个元素相加可能得到的所有结果。下面我们将证明,C + C = [0, 2]。

Read more…

几个令人惊叹的函数图像

    国外有人发现一个鲜为人知的古董级函数作图软件—— GrafEq 。这个软件只有 2M 大小,它的功能就只有一个:作出形如 x2 + y2 = 1 的二元等式或者不等式的图像。令人惊叹的是,这个软件的图像绘制能力异常强大, Mathematica 等大型专业数学软件完全不是它的对手。
    这个软件早就没再更新了。它的“最新版本”是 2.12 ,只支持 Windows 95 到 Windows XP 的系统,或者 PowerPC 7.12 到 MacOS 9.2 的系统,可见其年代久远。神奇的是,这个软件的官方网站依然健在,而且软件竟然也都能下载。如果你有幸还能装上这款软件,你将有机会重温一次 Windows 95 时代的软件安装画面。

Read more…

锈规作图续篇:单用一个只能画单位圆的圆规如何作线段中点

    在这个 Blog 的一篇很老很老的文章里,我曾经讲过一个非常有趣的几何作图问题,这个问题最早是由 D. Pedoe 教授在 1983 年提出的:给定 A 、 B 两点,只用一个生锈的圆规(没有直尺),如何找出一个点 C ,使得 A 、 B 、 C 恰好构成一个等边三角形?所谓“生锈的圆规”,也就是一个被卡住的圆规,它的两脚张角不能改变。我们不妨假设,它只能画出单位大小的圆。1987 年,我国的侯晓荣等人成功地解决了这个问题,并借助复平面理论得到了很多一般的结果,其研究成果《锈规作图论》发表在了《中国科学技术大学学报》上。

    锈规作出等边三角形的方法非常漂亮:利用锈规作图,我们能构造出两点之间由单位长线段构成的折线段,进而实现平行四边形的构造(已知其中三个点,能够只用锈规找出第四个点),进而完成等边三角形的构造。刚才提到的那篇“很老很老的文章”里有详细的描述,继续阅读之前,强烈建议先看一看。

    事实上,D. Pedoe 教授还提过另外一个问题:给定 A 、 B 两点,只用锈规能否作出 A 、 B 连线的中点?注意,由于没有直尺,线段 AB 实际上是画不出的。要想“隔空”找出线段的中点,显然并不容易。

    前几天翻起张景中的《数学家的眼光》,就是为了查阅这个问题的解决方法。《数学家的眼光》一书中详细描述了锈规作图找中点的方法,在这里和大家分享。

Read more…