Penney 的游戏:正所谓后发制人,先发制于人

让我们来玩一个游戏。连续抛掷硬币,直到最近三次硬币抛掷结果是“正反反”或者“反反正”。如果是前者,那么我获胜,你需要给我 1 元钱;如果是后者,那么你获胜,我会给你 1 元钱。你愿意跟我玩这样的游戏吗?换句话说,这个游戏是公平的吗? 乍看上去,你似乎没有什么不同意这种玩法的理由,毕竟“正反反”和“反反正”的概率是均等的。连续抛掷三次硬币可以产生 8 种不同的结果,上述两种各占其中的 1/8 。况且,序列“正反反”和“反反正”看上去又是如此对称,获胜概率怎么看怎么一样。 实际情况究竟如何呢?实际情况是,这个游戏并不是公平的——我的获胜概率是你的 3 倍!虽然“正反反”和“反反正”在一串随机硬币正反序列中出现的频率理论上是相同的,但别忘了这两个序列之间有一个竞争的关系,它们要比赛看谁先出现。一旦抛掷硬币产生出了其中一种序列,游戏即宣告结束。这样一来,你就会处于一个非常窘迫的位置:不管什么时候,只要掷出了一个正面,如果你还没赢的话,你就赢不了了——在出现“反反正”之前,我的“正反反”必然会先出现。 事实上,整个游戏的前两次硬币抛掷结果就已经决定了两人最终的命运。只要前两次抛掷结果是“正正”、“正反”、“反正”中的一个,我都必胜无疑,你完全没有翻身的机会;只有前两次掷出的是“反反”的结果,你才会赢得游戏的胜利。因此,我们两人的获胜概率是 3:1 ,我的优势绝不止是一点。 你或许想问,如果已知我的硬币序列是“正反反”,那么你应该选择一个怎样的硬币序列,就能保证获胜概率超过我呢?研究表明,你可以选择“正正反”,这样一来,我们两人的获胜概率将会变为 1:2 ,换句话说你将会有 2/3 的概率获胜。 Using your Head is Permitted 趣题站 2014 年 5 月的趣题对此进行了更深一步的探究。 A 、 B 两人打算玩这么一个游戏。首先, A 选择一个长度为 n 的正反序列,然后 B 再选择另一个长度为 n 的正反序列。之后,不断抛掷硬币,哪名玩家所选的正反序列最先出现,哪名玩家就获胜。我们的问题是,假如两名玩家都采取最优策略的话,对于哪些 n ,游戏对玩家 A 更有利一些(换句话说,玩家 A 拥有超过 50% 的胜率),对于哪些 n ,游戏对玩家 B 更有利一些(换句话说,玩家 […]

趣题:Kontsevich的单人跳棋游戏

           有一个无限大的棋盘,棋盘左下角有一个大小为 n 的阶梯形区域,其中最左下角的那个格子里有一枚棋子,如左图所示。你每次可以把一枚棋子“分裂”成两枚棋子,分别放在原位置的上边一格和右边一格。你的目的是通过有限次的操作,让整个阶梯里不再有任何棋子。下图所示的是 n = 2 时的一种解法。我们的问题是:对于那些 n ,这个游戏是有解的?       

Hofstadter的非线性递推数列

    在著名奇书 Gödel, Escher, Bach: An Eternal Golden Braid 的第五章中,为了展现出递推序列的神奇之处,作者 Douglas Hofstadter 定义了这么一个递推序列: G(n) = n – G(G(n – 1)) ,其中 G(1) = 1 。这个序列的前 30 项如下: n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 […]

用生命游戏来模拟生命游戏

    这是我前几天看到的一个视频。毫无疑问,它是我所见过的各种生命游戏构造中最神奇的一个:            在 LifeWiki 中有一个词条详细介绍了这个构造:它叫做 OTCA metapixel ,是由 Brice Due 在 2005 至 2006 年间构造的。其中,每一个 metapixel 的大小为 2048 × 2048 ,周期为 35328 。   视频出处:http://www.youtube.com/watch?v=QtJ77qsLrpw 查看更多:http://www.reddit.com/r/math/comments/lutec/l_i_f_e_c_e_p_t_i_o_n_or_how_to_simulate_the/ 如果你喜欢生命游戏,不要错过之前我们介绍过的史上最大的生命游戏构造—— Caterpillar 飞船

千万别学数学:最折磨人的数学未解之谜(一)

    数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。     作为一本数学趣题集, Mathematical Puzzles 一书中竟把仍未解决的数学趣题单独列为一章,可见这些问题有多么令人着迷。我从这一章里挑选了一些问题,在这里和大家分享一下。这本书是 04 年出版的,书里提到的一些“最新进展”其实已经不是最新的了;不过我也没有仔细考察每个问题当前的进展,因此本文的信息并不保证是 100% 准确的,在此向读者们表示歉意。     这篇文章很长,大家不妨用自己喜欢的方式马克一下,一天读一点。