位运算简介及实用技巧(三):进阶篇(2)

今天我们来看两个稍微复杂一点的例子。

n皇后问题位运算版
    n皇后问题是啥我就不说了吧,学编程的肯定都见过。下面的十多行代码是n皇后问题的一个高效位运算程序,看到过的人都夸它牛。初始时,upperlim:=(1 shl n)-1。主程序调用test(0,0,0)后sum的值就是n皇后总的解数。拿这个去交USACO,0.3s,暴爽。
procedure test(row,ld,rd:longint);
var
      pos,p:longint;
begin

{ 1}  if row<>upperlim then
{ 2}  begin
{ 3}     pos:=upperlim and not (row or ld or rd);
{ 4}     while pos<>0 do
{ 5}     begin
{ 6}        p:=pos and -pos;
{ 7}        pos:=pos-p;
{ 8}        test(row+p,(ld+p)shl 1,(rd+p)shr 1);
{ 9}     end;
{10}  end
{11}  else inc(sum);

end;
    乍一看似乎完全摸不着头脑,实际上整个程序是非常容易理解的。这里还是建议大家自己单步运行一探究竟,实在没研究出来再看下面的解说。

  
    和普通算法一样,这是一个递归过程,程序一行一行地寻找可以放皇后的地方。过程带三个参数,row、ld和rd,分别表示在纵列和两个对角线方向的限制条件下这一行的哪些地方不能放。我们以6×6的棋盘为例,看看程序是怎么工作的。假设现在已经递归到第四层,前三层放的子已经标在左图上了。红色、蓝色和绿色的线分别表示三个方向上有冲突的位置,位于该行上的冲突位置就用row、ld和rd中的1来表示。把它们三个并起来,得到该行所有的禁位,取反后就得到所有可以放的位置(用pos来表示)。前面说过-a相当于not a + 1,这里的代码第6行就相当于pos and (not pos + 1),其结果是取出最右边的那个1。这样,p就表示该行的某个可以放子的位置,把它从pos中移除并递归调用test过程。注意递归调用时三个参数的变化,每个参数都加上了一个禁位,但两个对角线方向的禁位对下一行的影响需要平移一位。最后,如果递归到某个时候发现row=111111了,说明六个皇后全放进去了,此时程序从第1行跳到第11行,找到的解的个数加一。

    ~~~~====~~~~=====   华丽的分割线   =====~~~~====~~~~

Gray码
    假如我有4个潜在的GF,我需要决定最终到底和谁在一起。一个简单的办法就是,依次和每个MM交往一段时间,最后选择给我带来的“满意度”最大的MM。但看了dd牛的理论后,事情开始变得复杂了:我可以选择和多个MM在一起。这样,需要考核的状态变成了2^4=16种(当然包括0000这一状态,因为我有可能是玻璃)。现在的问题就是,我应该用什么顺序来遍历这16种状态呢?
    传统的做法是,用二进制数的顺序来遍历所有可能的组合。也就是说,我需要以0000->0001->0010->0011->0100->…->1111这样的顺序对每种状态进行测试。这个顺序很不科学,很多时候状态的转移都很耗时。比如从0111到1000时我需要暂时甩掉当前所有的3个MM,然后去把第4个MM。同时改变所有MM与我的关系是一件何等巨大的工程啊。因此,我希望知道,是否有一种方法可以使得,从没有MM这一状态出发,每次只改变我和一个MM的关系(追或者甩),15次操作后恰好遍历完所有可能的组合(最终状态不一定是1111)。大家自己先试一试看行不行。
    解决这个问题的方法很巧妙。我们来说明,假如我们已经知道了n=2时的合法遍历顺序,我们如何得到n=3的遍历顺序。显然,n=2的遍历顺序如下:

00
01
11
10

    你可能已经想到了如何把上面的遍历顺序扩展到n=3的情况。n=3时一共有8种状态,其中前面4个把n=2的遍历顺序照搬下来,然后把它们对称翻折下去并在最前面加上1作为后面4个状态:

000
001
011
010  ↑
——–
110  ↓
111
101
100

    用这种方法得到的遍历顺序显然符合要求。首先,上面8个状态恰好是n=3时的所有8种组合,因为它们是在n=2的全部四种组合的基础上考虑选不选第3个元素所得到的。然后我们看到,后面一半的状态应该和前面一半一样满足“相邻状态间仅一位不同”的限制,而“镜面”处则是最前面那一位数不同。再次翻折三阶遍历顺序,我们就得到了刚才的问题的答案:

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

    这种遍历顺序作为一种编码方式存在,叫做Gray码(写个中文让蜘蛛来抓:格雷码)。它的应用范围很广。比如,n阶的Gray码相当于在n维立方体上的Hamilton回路,因为沿着立方体上的边走一步,n维坐标中只会有一个值改变。再比如,Gray码和Hanoi塔问题等价。Gray码改变的是第几个数,Hanoi塔就该移动哪个盘子。比如,3阶的Gray码每次改变的元素所在位置依次为1-2-1-3-1-2-1,这正好是3阶Hanoi塔每次移动盘子编号。如果我们可以快速求出Gray码的第n个数是多少,我们就可以输出任意步数后Hanoi塔的移动步骤。现在我告诉你,Gray码的第n个数(从0算起)是n xor (n shr 1),你能想出来这是为什么吗?先自己想想吧。

    下面我们把二进制数和Gray码都写在下面,可以看到左边的数异或自身右移的结果就等于右边的数。

二进制数   Gray码
   000       000
   001       001
   010       011
   011       010
   100       110
   101       111
   110       101
   111       100

    从二进制数的角度看,“镜像”位置上的数即是对原数进行not运算后的结果。比如,第3个数010和倒数第3个数101的每一位都正好相反。假设这两个数分别为x和y,那么x xor (x shr 1)和y xor (y shr 1)的结果只有一点不同:后者的首位是1,前者的首位是0。而这正好是Gray码的生成方法。这就说明了,Gray码的第n个数确实是n xor (n shr 1)。

&nbsp
;   今年四月份mashuo给我看了这道题,是二维意义上的Gray码。题目大意是说,把0到2^(n+m)-1的数写成2^n * 2^m的矩阵,使得位置相邻两数的二进制表示只有一位之差。答案其实很简单,所有数都是由m位的Gray码和n位Gray码拼接而成,需要用左移操作和or运算完成。完整的代码如下:
var
   x,y,m,n,u:longint;
begin
   readln(m,n);
   for x:=0 to 1 shl m-1 do begin
      u:=(x xor (x shr 1)) shl n; //输出数的左边是一个m位的Gray码
      for y:=0 to 1 shl n-1 do
         write(u or (y xor (y shr 1)),' '); //并上一个n位Gray码
      writeln;
   end;
end.

Matrix67原创
转贴请注明出处

神奇的分形艺术(二):一条连续的曲线可以填满整个平面

    虽然有些东西似乎是显然的,但一个完整的定义仍然很有必要。比如,大多数人并不知道函数的连续性是怎么定义的,虽然大家一直在用。有人可能会说,函数是不是连续的一看就知道了嘛,需要定义么。事实上,如果没有严格的定义,你很难把下面两个问题说清楚。
    你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个最小正周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗?
    Cauchy定义专门用来解决这一类问题,它严格地定义了函数的连续性。Cauchy定义是说,函数f在x=c处连续当且仅当对于一个任意小的正数ε,你总能找到一个正数δ使得对于定义域上的所有满足c-δ< x <c+δ的x都有f(c)-ε<f(x)<f(c)+ε。直观地说,如果函数上有一点P,对于任意小的ε,P点左右一定范围内的点与P的纵坐标之差均小于ε,那么函数在P点处连续。这样就保证了P点两旁的点与P无限接近,也就是我们常说的“连续”。这又被称作为Epsilon-Delta定义,可以写成“ε-δ定义”。
    有了Cauchy定义,回过头来看前面的问题,我们可以推出:第一个函数在任何一点都不连续,因为当ε< 1时,δ范围内总存在至少一个点跳出了ε的范围;第二个函数只在x=0处是连续的,因为此时不管ε是多少,只需要δ比ε小一点就可以满足ε-δ定义了。
    在拓扑学中,也有类似于ε-δ的连续性定义。假如一个函数f(t)对应空间中的点,对于任意小的正数ε,总能找到一个δ使得定义域(t-δ,t+δ)对应的所有点与f(t)的距离都不超过ε,那么我们就说f(t)所对应的曲线在点f(t)处连续。

    回到我们的话题,如何构造一条曲线使得它可以填满整个平面。在这里我们仅仅说明存在一条填满单位正方形的曲线就够了,因为将此单位正方形平铺在平面上就可以得到填满整个平面的曲线。大多数人可能会想到下面这种构造方法:先画一条单位长的曲线,然后把它变成一个几字形,接着把每一条水平的小横线段变成一个几字形,然后不断迭代下去,最后得到的图形一定可以填满整个单位正方形。我们甚至可以递归地定义出一个描述此图形的函数:将定义域平均分成五份,第二和第四份对应两条竖直线段上的点,并继续对剩下的三个区间重复进行这种操作。这个函数虽然分布得有些“不均匀”,但它确实是一个合法的函数。最后的图形显然可以填充一个正方形,但它是不是一条曲线我们还不知道呢。稍作分析你会发现这条“曲线”根本不符合前面所说的ε-δ定义,考虑任何一个可以无限细分的地方(比如x=1/2处),只要ε<1/2,δ再小其范围内也有一条竖线捅破ε的界线。这就好像当n趋于无穷时sin(nx)根本不是一条确定的曲线一样,因为某个特定的函数值根本不能汇聚到一点。考虑到这一点,我们能想到的很多可以填满平面的“曲线”都不是真正意义上的连续曲线。为了避免这样的情况出现,这条曲线必须“先把自己周围填满再延伸出去”,而填满自己周围前又必须先填满“更小规模的周围”。这让我们联想到分形图形。

    德国数学家David Hilbert发现了这样一种可以填满整个单位正方形的分形曲线,他称它为Hilbert曲线。我们来看一看这条曲线是怎么构造出来的。首先,我们把一个正方形分割为4个小正方形,然后从左下角的那个小正方形开始,画一条线经过所有小正方形,最后到达右下角。现在,我们把这个正方形分成16个小正方形,目标同样是从左下角出发遍历所有的格子最后到达右下角。而在这之前我们已经得到了一个2×2方格的遍历方法,我们正好可以用它。把两个2×2的格子原封不动地放在上面两排,右旋90度放在左下,左旋90度放在右下,然后再补三条线段把它们连起来。现在我们得到了一种从左下到右下遍历4×4方格的方法,而这又可以用于更大规模的图形中。用刚才的方法把四个4×4的方格放到8×8的方格中,我们就得到了一条经过所有64个小方格的曲线。不断地这样做下去,无限多次地迭代后,每个方格都变得无穷小,最后的图形显然经过了方格上所有的点,它就是我们所说的Hilbert曲线。下图是一个迭代了n多次后的图形,大致上反映出Hilbert曲线的样子。
        

    根据上面这种方法,我们可以构造出函数f(t)使它能映射到单位正方形中的所有点。Hilbert曲线首先经过单位正方形左下1/4的所有点,然后顺势北上,东征到右上角,最后到达东南方的1/4正方形,其中的每一个阶段都是一个边长缩小了一半的“小Hilbert曲线”。函数f(t)也如此定义:[0,1/4]对应左下角的小正方形中所有的点,[1/4,1/2]就对应左上角,依此类推。每个区间继续划分为四份,依次对应面积为1/16的正方形,并无限制地这么细分下去。注意这里的定义域划分都是闭区间的形式,这并不会发生冲突,因为所有m/4^n处的点都是两个小Hilbert曲线的“交接处”。比如那个f(1/4)点就是左上左下两块1/4正方形共有的,即单位正方形正左边的那一点。这个函数是一条根正苗红的连续曲线,完全符合ε-δ定义,因为f(t-δ)和f(t+δ)显然都在f(t)的周围。
    Hilbert曲线是一条经典的分形曲线。它违背了很多常理。比如,把Hilbert曲线平铺在整个平面上,它就成了一条填满整个平面的曲线。两条Hilbert曲线对接可以形成一个封闭曲线,而这个封闭曲线竟然没有内部空间。回想我们上次介绍的Hausdorff维度,你会发现这条曲线是二维的,因为它包含自身4份,每一份的一维大小都是原来的一半,因此维度等于log(4)/log(2)。这再一次说明了它可以填满整个平面。

    Hilbert曲线的价值在于建立一维空间与二维空间一一对应的关系。Hilbert曲线可以看作是一个一维空间到二维空间的映射,也就是说我们证明了直线上的点和平面上的点一样多(集合的势相同)。Hilbert曲线也是一种遍历二维格点的方法,它同样可以用来证明自然数和有理数一样多。如果你已经知道此结论的Cantor证明,你会立刻明白Hilbert遍历法的证明,这里就不再多说了。当然,Hilbert曲线也可以扩展到三维空间,甚至更高维的空间,从而建立一维到任意多维的映射关系。下图就是一个三维Hilbert曲线(在迭代

神奇的分形艺术(一):无限长的曲线可能围住一块有限的面积

    很多东西都是吹神了的,其中麦田圈之谜相当引人注目。上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。你或许会觉得这个图形很好看。看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。

    在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。这样,原来的一条线段就变成了四条小的线段。用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。然后继续对16条线段进行相同的操作,并无限地迭代下去。下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。这样的图形可以用Logo语言很轻松地画出来。

    你可能注意到一个有趣的事实:整个线条的长度每一次都变成了原来的4/3。如果最初的线段长为一个单位,那么第一次操作后总长度变成了4/3,第二次操作后总长增加到16/9,第n次操作后长度为(4/3)^n。毫无疑问,操作无限进行下去,这条曲线将达到无限长。难以置信的是这条无限长的曲线却“始终只有那么大”。

        
    当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。换句话说,无限长的曲线围住了一块有限的面积。有人可能会问为什么面积是有限的。虽然从上面的图上看结论很显然,但这里我们还是要给出一个简单的证明。三条曲线中每一条的第n次迭代前有4^(n-1)个长为(1/3)^(n-1)的线段,迭代后多出的面积为4^(n-1)个边长为(1/3)^n的等边三角形。把4^(n-1)扩大到4^n,再把所有边长为(1/3)^n的等边三角形扩大为同样边长的正方形,总面积仍是有限的,因为无穷级数Σ4^n/9^n显然收敛。这个神奇的雪花图形叫做Koch雪花,其中那条无限长的曲线就叫做Koch曲线。他是由瑞典数学家Helge von Koch最先提出来的。本文最开头提到的麦田圈图形显然是想描绘Koch雪花。

    分形这一课题提出的时间比较晚。Koch曲线于1904年提出,是最早提出的分形图形之一。我们仔细观察一下这条特别的曲线。它有一个很强的特点:你可以把它分成若干部分,每一个部分都和原来一样(只是大小不同)。这样的图形叫做“自相似”图形(self-similar),它是分形图形(fractal)最主要的特征。自相似往往都和递归、无穷之类的东西联系在一起。比如,自相似图形往往是用递归法构造出来的,可以无限地分解下去。一条Koch曲线中包含有无数大小不同的Koch曲线。你可以对这条曲线的尖端部分不断放大,但你所看到的始终和最开始一样。它的复杂性不随尺度减小而消失。另外值得一提的是,这条曲线是一条连续的,但处处不光滑(不可微)的曲线。曲线上的任何一个点都是尖点。

    分形图形有一种特殊的计算维度的方法。我们可以看到,在有限空间内就可以达到无限长的分形曲线似乎已经超越了一维的境界,但说它是二维图形又还不够。Hausdorff维度就是专门用来对付这种分形图形的。简单地说,Hausdorff维度描述分形图形中整个图形的大小与一维大小的关系。比如,正方形是一个分形图形,因为它可以分成四个一模一样的小正方形,每一个小正方形的边长都是原来的1/2。当然,你也可以把正方形分成9个边长为1/3的小正方形。事实上,一个正方形可以分割为a^2个边长为1/a的小正方形。那个指数2就是正方形的维度。矩形、三角形都是一样,给你a^2个同样的形状才能拼成一个边长为a倍的相似形,因此它们都是二维的。我们把这里的“边长”理解为一维上的长度,那个1/a则是两个相似形的相似比。如果一个自相似形包含自身N份,每一份的一维大小都是原来的1/s,则这个相似形的Hausdorff维度为log(N)/log(s)。一个立方体可以分成8份,每一份的一维长度都是原来的一半,因此立方体的维度为log(8)/log(2)=3。同样地,一个Koch曲线包含四个小Koch曲线,大小两个Koch曲线的相似比为1/3,因此Koch曲线的Hausdorff维度为log(4)/log(3)。它约等于1.26,是一个介于1和2之间的实数。

    我们常说分形图形是一门艺术。把不同大小的Koch雪花拼接起来可以得到很多美丽的图形。如果有MM看了前面的文字一句也不懂,下面这些图片或许会让你眼前一亮。

放图前留下一句话:
Matrix67原创
转贴请注明出处

Matrix67生日邀请赛 完全题解发布

题目在这里:http://www.matrix67.com/blog/article.asp?id=241

如果机房马上要关门了,或者你急着要和MM约会,请看简要题解:

1. 用类似于传统hanoi的递归方法可以做到3^n-1次。这显然是最多的了,因为总的状态数也只有3^n个。
2. 可以证明,竞赛图中不存在环当且仅当所有顶点的出度从小到大排列依次为0, 1, 2, … , n-1 。
3. 在最短路树上做树状DP,需要多叉转二叉。注意几种需要输出0的情况。
4. 搜索,算是练基本功了。用位运算优化,不加任何剪枝就能过。

否则,请慢慢阅读——

Problem 1: 为什么最少
    如果你还不熟悉Hanoi塔的解法,去题目中提到的那篇日志看看吧。如果你已经熟悉Hanoi塔的解法,你会立刻想到这道题的解法:依然是递归地解决。至于怎么递归,样例已经告诉我们了:把前n-1个金片从1号柱搬到3号柱,把第n片移到2号柱,又把那n-1片从3号柱搬回1号柱,再把第n片搬到3号柱,最后把那n-1个金片又搬过来,完成整个操作。
    我们下面解决三个问题:为什么这样不会重复出现状态,这样的移动步数是多少,为什么这样的操作步数是最多的。
    为什么这样不会出现重复的状态呢?因为我们假设前n-1个金片的移动过程中没有重复状态,而三次对n-1的调用时整个状态由于第n个金片的位置不同而不同。
    这样的方法获得的操作步数是多少呢?答案是3^n-1。我们可以用数学归纳法证明,n=1时步数为2显然正确,而f(n+1)=3f(n)+2=3*(3^n-1)+2=3^(n+1)-1。
    为什么这样的操作步数是最多的呢?废话,这样的操作步数当然是最多的,因为总的状态数也只有3^n个(每个金片的三种可能的位置确定了一种状态),你的移动步骤能比这个数目还多就见鬼了。

    这道题有人用了math库,没有提供math库导致无法编译是我的失误,向大家道歉。

    Hanoi问题的变种太多了,比如多根柱子、单向移动、双色金片等等。dd上次不是也出了一题么。

    这题代码很短,我公布在下面。
program whyleast;

procedure solve(t,a,b:integer);
begin
   if t=0 then exit else
   begin
      solve(t-1,a,b);
      writeln(a,' ',2);
      solve(t-1,b,a);
      writeln(2,' ',b);
      solve(t-1,a,b);
   end;
end;

{====main====}
var
   n,i:integer;
   ans:longint=1;
begin
   assign(input,'whyleast.in');
   reset(input);
   assign(output,'whyleast.out');
   rewrite(output);
  
   readln(n);
   for i:=1 to n do ans:=ans*3;
   writeln(ans-1);
   solve(n,1,3);
  
   close(input);
   close(output);
end.

Problem 2: 身高控制计划
    一个竞赛图是指任两个点之间都有一条有向边的图。竞赛图有很多奇妙的性质,比如一个竞赛图必然存在一条经过所有节点的路等等。
    下面我们证明,竞赛图中不存在环当且仅当所有顶点的出度从小到大排列依次为0, 1, 2, … , n-1 :
    如果一个有向图的所有点出度都至少为1,那么这个图一定有环,因为在找到环之前DFS总可以找到新的节点。如果有向图无环,必然存在一个点没有出度。由于任两点之间都有有向边,那么其它所有点都要连一条边指向它,这样其它所有点的出度都至少为1了。删掉这个出度为0的点后剩下的图仍然无环,不断对剩下的图继续上面的过程就得到了我们的结论。
    现在我们的算法就很明确了,首先统计初始状态下的出度,然后设计某种数据结构完成两种操作:改变一个数(加一减一),询问所有数是否恰好为0, 1, 2, … , n-1 。
    统计初始状态下的出度方法有很多,这里介绍两个。首先对身高排序,然后对于每个人进行二分,寻找有序数列中该数的4/5和5/4各在什么地方。还有一种方法也是先排序,然后从左到右扫描整个序列,并保持两个指针始终指向4/5和5/4处。每次开始处理一个新的数时都把两个指针适当地右移直到超出了这个数的4/5或5/4为止。两种方法都是O(nlogn)。别以为第二种方法是线性的哦,线性算法之前还有一个排序呢。
    操作的处理也有不少方法。最简单的方法就是统计当前图中出度的数目有多少种。就是说,用a[i]表示出度为i的点有多少个,然后不断更新a[i]>0的有多少个。当这个数目等于n时我们就认为图中没有环(因为出度可能的取值只有从0到n-1共n种)。
    注意,由于同一条边可能被操作多次,因此需要一个Hash表(开散列)来判重。具体地说,你需要判断这条边以前被操作过奇数次还是偶数次,以决定哪边的出度要增加,哪边的出度要减小。

Problem 3: 狼的复仇

    把这个问题中所有的最短路都画出来是什么样子?它一定是一棵树!为什么?首先,图肯定是连通的,因为源点到任一个点都有一条最短路;其次,图肯定无环,因为源点到任一个点只有一条最短路(环的出现将意味着某些点有更短的路存在)。仔细想一下Dijkstra的算法过程,不难想到Dijkstra算法的实质就是在建这棵树——每一次由x节点加上边x-y扩展到y节点就记作x是y的父亲。注意观察上图中左图是如何变成右图的。这样,题目变成了这种形式:在有根树上,除根节点之外的其它节点中选择一些节点,使得这些节点和它们所有祖先的权值和最大。这是一个经典的树型动态规划模型。我们用f[i,j]表示以节点i为根节点的子树花费j个单位的材料最多可以得到多大的攻击力。令节点1的材料和攻击力都为0,那么最后输出f[1,0..k]中的最大值即可。决策分为两类,要么该位置建一个塔,要么把所有材料适当地分给儿子(自己就不需要再建了)。但这样的复杂度太高,我们需要用DP嵌套或者更巧妙的多叉转二叉来解决。
    DP嵌套理解起来更简单,它主要是解决这样一个子问题:若某个节点有m个儿子,我们需要寻找当j1+j2+…+jm等于某个定值时f[儿子1,j1]+f[儿子2,j2]+…+f[儿子m,jm]的最大值。这个子问题与我的某次模拟赛中论文课题选择那道DP题几乎是一模一样,看一看那道题就明白了。下面简单描述多叉转二叉的方法。

    如果你还不知道多叉转二叉的话,这道题是一个绝好的学习材料。一棵多叉树可以用“左儿子右兄弟”的方法转为二叉树,具体的说就是把多叉树转化为这种形式:节点的左儿子才是真正的儿子,节点的右儿子只是和它同辈的兄弟。注意看上图的左图是如何变成右图的。现在,我们的f[i,j]表示

从零开始学算法:十种排序算法介绍(中)

    本文被华丽的分割线分为了四段。对于O(nlogn)的排序算法,我们详细介绍归并排序并证明归并排序的时间复杂度,然后简单介绍堆排序,之后给出快速排序的基本思想和复杂度证明。最后我们将证明,O(nlogn)在理论上已经达到了最优。学过OI的人一般都学过这些很基础的东西,大多数OIer们不必看了。为了保持系列文章的完整性,我还是花时间写了一下。

    首先考虑一个简单的问题:如何在线性的时间内将两个有序队列合并为一个有序队列(并输出)?

A队列:1 3 5 7 9
B队列:1 2 7 8 9

    看上面的例子,AB两个序列都是已经有序的了。在给出数据已经有序的情况下,我们会发现很多神奇的事,比如,我们将要输出的第一个数一定来自于这两个序列各自最前面的那个数。两个数都是1,那么我们随便取出一个(比如A队列的那个1)并输出:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1

    注意,我们取出了一个数,在原数列中删除这个数。删除操作是通过移动队首指针实现的,否则复杂度就高了。
    现在,A队列打头的数变成3了,B队列的队首仍然是1。此时,我们再比较3和1哪个大并输出小的那个数:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1 1

    接下来的几步如下:

A队列:1 3 5 7 9         A队列:1 3 5 7 9         A队列:1 3 5 7 9          A队列:1 3 5 7 9
B队列:1 2 7 8 9   ==>   B队列:1 2 7 8 9   ==>   B队列:1 2 7 8 9    ==>   B队列:1 2 7 8 9     ……
输出:1 1 2              输出:1 1 2 3            输出:1 1 2 3 5           输出:1 1 2 3 5 7

    我希望你明白了这是怎么做的。这个做法显然是正确的,复杂度显然是线性。

    归并排序(Merge Sort)将会用到上面所说的合并操作。给出一个数列,归并排序利用合并操作在O(nlogn)的时间内将数列从小到大排序。归并排序用的是分治(Divide and Conquer)的思想。首先我们把给出的数列平分为左右两段,然后对两段数列分别进行排序,最后用刚才的合并算法把这两段(已经排过序的)数列合并为一个数列。有人会问“对左右两段数列分别排序时用的什么排序”么?答案是:用归并排序。也就是说,我们递归地把每一段数列又分成两段进行上述操作。你不需要关心实际上是怎么操作的,我们的程序代码将递归调用该过程直到数列不能再分(只有一个数)为止。
    初看这个算法时有人会误以为时间复杂度相当高。我们下面给出的一个图将用非递归的眼光来看归并排序的实际操作过程,供大家参考。我们可以借助这个图证明,归并排序算法的时间复杂度为O(nlogn)。

[3] [1] [4] [1] [5] [9] [2] [7]
  \ /     \ /     \ /     \ /
[1 3]   [1 4]   [5 9]   [2 7]
     \   /           \   /
   [1 1 3 4]       [2 5 7 9]
           \       /
       [1 1 2 3 4 5 7 9]

    上图中的每一个“ \ / ”表示的是上文所述的线性时间合并操作。上图用了4行来图解归并排序。如果有n个数,表示成上图显然需要O(logn)行。每一行的合并操作复杂度总和都是O(n),那么logn行的总复杂度为O(nlogn)。这相当于用递归树的方法对归并排序的复杂度进行了分析。假设,归并排序的复杂度为T(n),T(n)由两个T(n/2)和一个关于n的线性时间组成,那么T(n)=2*T(n/2)+O(n)。不断展开这个式子我们可以同样可以得到T(n)=O(nlogn)的结论,你可以自己试试。如果你能在线性的时间里把分别计算出的两组不同数据的结果合并在一起,根据T(n)=2*T(n/2)+O(n)=O(nlogn),那么我们就可以构造O(nlogn)的分治算法。这个结论后面经常用。我们将在计算几何部分举一大堆类似的例子。
    如果你第一次见到这么诡异的算法,你可能会对这个感兴趣。分治是递归的一种应用。这是我们第一次接触递归运算。下面说的快速排序也是用的递归的思想。递归程序的复杂度分析通常和上面一样,主定理(Master Theory)可以简化这个分析过程。主定理和本文内容离得太远,我们以后也不会用它,因此我们不介绍它,大家可以自己去查。有个名词在这里的话找学习资料将变得非常容易,我最怕的就是一个东西不知道叫什么名字,半天找不到资料。

    归并排序有一个有趣的副产品。利用归并排序能够在O(nlogn)的时间里计算出给定序列里逆序对的个数。你可以用任何一种平衡二叉树来完成这个操作,但用归并排序统计逆序对更方便。我们讨论逆序对一般是说的一个排列中的逆序对,因此这里我们假设所有数不相同。假如我们想要数1, 6, 3, 2, 5, 4中有多少个逆序对,我们首先把这个数列分为左右两段。那么一个逆序对只可能有三种情况:两个数都在左边,两个数都在右边,一个在左一个在右。在左右两段分别处理完后,线性合并的过程中我们可以顺便算出所有第三种情况的逆序对有多少个。换句话说,我们能在线性的时间里统计出A队列的某个数比B队列的某个数大有多少种情况。

A队列:1 3 6         A队列:1 3 6         A队列:1 3 6         A队列:1 3 6         A队列:1 3 6
B队列:2 4 5   ==>   B队列:2 4 5   ==>   B队列:2 4 5   ==>   B队列:2 4 5   ==>   B队列:2 4 5   ……
输出:               输出:1              输出:1 2            输出:1 2 3          输出:1 2 3 4

    每一次从B队列取出一个数时,我们就知道了在A队列中有多少个数比B队列的这个数大,它等于A队列现在还剩的数的个数。比如,当我们从B队列中取出2时,我们同时知道了A队列的3和6两个数比2大。在合并操作中我们不断更新A队列中还剩几个数,在每次从B队列中取出一个数时把当前A队列剩的数目加进最终答案里。这样我们算出了所有“大的数在前一半,小的数在后一半”的情况,其余情况下的逆序对在这之前已经被递归地算过了。

============================华丽的分割线============================

    堆排序(Heap Sort)利用了堆(Heap)这种数据结构(什么是堆?)。堆的插入操作是平均常数的,而删除一个根节点需要花费O(log n)的时间。因此,完成堆排序需要线性时间建立堆(把所有元素依次插入一个堆),然后用总共O(nlogn)的时间不断取出最小的那个数。只要堆会搞,堆排序就会搞。堆在那篇日志里有详细的说明,因此这里不重复说了。

============================华丽的分割线============================

    快速排序(Quick Sort)也应用了递归的思想。我们想要把给定序列分成两段,并对这两段分别进行排序。一种不错的想法是,选取一个数作为“关键字”,并把其它数分割为两部分,把所有小于关键字的数都放在关键字的左边,大于关键字的都放在右边,然后递归地对左边和右边进行排序。把该区间内的所有数依次与关键字比较,我们就可以在线性的时间里完成分割的操作。完成分割操作有很多有技巧性的实现方法,比如最常用的一种是定义两个指针,一个从前往后找找到比关键字大的,一个从后往前找到比关键字小的,然后两个指针对应的元素交换位置并继续移动指针重复刚才的过程。这只是大致的方法,具体的实现还有很多细节问题。快速排序是我们最常用的代码之一,网上的快速排序代码五花八门,各种语言,各种风格的都有。大家可以随便找一个来看看,我说过了我们讲算法但不讲如何实现。NOIp很简单,很多人NOIp前就背了一个快速排序代码就上战场了。当时我把快速排序背完了,抓紧时间还顺便背了一下历史,免得晚上听写又不及格。
    不像归并排序,快速排序的时间复杂度很难计算。我们可以看到,归并排序的复杂度最坏情况下也是O(nlogn)的,而快速排序的最坏情况是O(n^2)的。如果每一次选的关键字都是当前区间里最大(或最小)的数,那么这样将使得每一次的规模只减小一个数,这和插入排序、选择排序等平方级排序没有区别。这种情况不是不可能发生。如果你每次选择关键字都是选择的该区间的第一个数,而给你的数据恰好又是已经有序的,那你的快速排序就完蛋了。显然,最好情况是每一次选的数正好就是中位数,这将把该区间平分为两段,复杂度和前面讨论的归并排序一模一样。根据这一点,快速排序有一些常用的优化。比如,我们经常从数列中随机取一个数当作是关键字(而不是每次总是取固定位置上的数),从而尽可能避免某些特殊的数据所导致的低效。更好的做法是随机取三个数并选择这三个数的中位数作为关键字。而对三个数的随机取值反而将花费更多的时间,因此我们的这三个数可以分别取数列的头一个数、末一个数和正中间那个数。另外,当递归到了一定深度发现当前区间里的数只有几个或十几个时,继续递归下去反而费时,不如返回插入排序后的结果。这种方法同时避免了当数字太少时递归操作出错的可能。

    下面我们证明,快速排序算法的平均复杂度为O(nlogn)。不同的书上有不同的解释方法,这里我选用算法导论上的讲法。它更有技巧性一些,更有趣一些,需要转几个弯才能想明白。
    看一看快速排序的代码。正如我们提到过的那种分割方法,程序在经过若干次与关键字的比较后才进行一次交换,因此比较的次数比交换次数更多。我们通过证明一次快速排序中元素之间的比较次数平均为O(nlogn)来说明快速排序算法的平均复杂度。证明的关键在于,我们需要算出某两个元素在整个算法过程中进行过比较的概率。
    我们举一个例子。假如给出了1到10这10个数,第一次选择关键字7将它们分成了{1,2,3,4,5,6}和{8,9,10}两部分,递归左边时我们选择了3作为关键字,使得左部分又被分割为{1,2}和{4,5,6}。我们看到,数字7与其它所有数都比较过一次,这样才能实现分割操作。同样地,1到6这6个数都需要与3进行一次比较(除了它本身之外)。然而,3和9决不可能相互比较过,2和6也不可能进行过比较,因为第一次出现在3和9,2和6之间的关键字把它们分割开了。也就是说,两个数A(i)和A(j)比较过,当且仅当第一个满足A(i)<=x<=A(j)的关键字x恰好就是A(i)或A(j) (假设A(i)比A(j)小)。我们称排序后第i小的数为Z(i),假设i<j,那么第一次出现在Z(i)和Z(j)之间的关键字恰好就是Z(i)或Z(j)的概率为2/(j-i+1),这是因为当Z(i)和Z(j)之间还不曾有过关键字时,Z(i)和Z(j)处于同一个待分割的区间,不管这个区间有多大,不管递归到哪里了,关键字的选择总是随机的。我们得到,Z(i)和Z(j)在一次快速排序中曾经比较过的概率为2/(j-i+1)。
    现在有四个数,2,3,5,7。排序时,相邻的两个数肯定都被比较过,2和5、3和7都有2/3的概率被比较过,2和7之间被比较过有2/4的可能。也就是说,如果对这四个数做12次快速排序,那么2和3、3和5、5和7之间一共比较了12*3=36次,2和5、3和7之间总共比较了8*2=16次,2和7之间平均比较了6次。那么,12次排序中总的比较次数期望值为36+16+6=58。我们可以计算出单次的快速排序平均比较了多少次:58/12=29/6。其实,它就等于6项概率之和,1+1+1+2/3+2/3+2/4=29/6。这其实是与期望值相关的一个公式。
    同样地,如果有n个数,那么快速排序平均需要的比较次数可以写成下面的式子。令k=j-i,我们能够最终得到比较次数的期望值为O(nlogn)。
  
    这里用到了一个知识:1+1/2+1/3+…+1/n与log n增长速度相同,即Σ(1/n)=Θ(log n)。它的证明放在本文的最后。

    在三种O(nlogn)的排序算法中,快速排序的理论复杂度最不理想,除了它以外今天说的另外两种算法都是以最坏情况O(nlogn)的复杂度进行排序。但实践上看快速排序效率最高(不然为啥叫快速排序呢),原因在于快速排序的代码比其它同复杂度的算法更简洁,常数时间更小。

    快速排序也有一个有趣的副产品:快速选择给出的一些数中第k小的数。一种简单的方法是使用上述任一种O(nlogn)的算法对这些数进行排序并返回排序后数组的第k个元素。快速选择(Quick Select)算法可以在平均O(n)的时间完成这一操作。它的最坏情况同快速排序一样,也是O(n^2)。在每一次分割后,我们都可以知道比关键字小的数有多少个,从而确定了关键字在所有数中是第几小的。我们假设关键字是第m小。如果k=m,那么我们就找到了答案——第k小元素即该关键字。否则,我们递归地计算左边或者右边:当k<m时,我们递归地寻找左边的元素中第k小的;当k>m时,我们递归地寻找右边的元素中第k-m小的数。由于我们不考虑所有的数的顺序,只需要递归其中的一边,因此复杂度大大降低。复杂度平均线性,我们不再具体证了。
    还有一种算法可以在最坏O(n)的时间里找出第k小元素。那是我见过的所有算法中最没有实用价值的算法。那个O(n)只有理论价值。

============================华丽的分割线============================

    我们前面证明过,仅仅依靠交换相邻元素的操作,复杂度只能达到O(n^2)。于是,人们尝试交换距离更远的元素。当人们发现O(nlogn)的排序算法似乎已经是极限的时候,又是什么制约了复杂度的下界呢?我们将要讨论的是更底层的东西。我们仍然假设所有的数都不相等。
    我们总是不断在数与数之间进行比较。你可以试试,只用4次比较绝对不可能给4个数排出顺序。每多进行一次比较我们就又多知道了一个大小关系,从4次比较中一共可以获知4个大小关系。4个大小关系共有2^4=16种组合方式,而4个数的顺序一共有4!=24种。也就是说,4次比较可能出现的结果数目不足以区分24种可能的顺序。更一般地,给你n个数叫你排序,可能的答案共有n!个,k次比较只能区分2^k种可能,于是只有2^k>=n!时才有可能排出顺序。等号两边取对数,于是,给n个数排序至少需要log2(n!)次。注意,我们并没有说明一定能通过log2(n!)次比较排出顺序。虽然2^5=32超过了4!,但这不足以说明5次比较一定足够。如何用5次比较确定4个数的大小关系还需要进一步研究。第一次例外发生在n=12的时候,虽然2^29>12!,但现已证明给12个数排序最少需要30次比较。我们可以证明log(n!)的增长速度与nlogn相同,即log(n!)=Θ(nlogn)。这是排序所需要的最少的比较次数,它给出了排序复杂度的一个下界。log(n!)=Θ(nlogn)的证明也附在本文最后。
    这篇日志的第三题中证明log2(N)是最优时用到了几乎相同的方法。那种“用天平称出重量不同的那个球至少要称几次”一类题目也可以用这种方法来解决。事实上,这里有一整套的理论,它叫做信息论。信息论是由香农(Shannon)提出的。他用对数来表示信息量,用熵来表示可能的情况的随机性,通过运算可以知道你目前得到的信息能够怎样影响最终结果的确定。如果我们的信息量是以2为底的,那信息论就变成信息学了。从根本上说,计算机的一切信息就是以2为底的信息量(bits=binary digits),因此我们常说香农是数字通信之父。信息论和热力学关系密切,比如熵的概念是直接从热力学的熵定义引申过来的。和这个有关的东西已经严重偏题了,这里不说了,有兴趣可以去看《信息论与编码理论》。我对这个也很有兴趣,半懂不懂的,很想了解更多的东西,有兴趣的同志不妨加入讨论。物理学真的很神奇,利用物理学可以解决很多纯数学问题,我有时间的话可以举一些例子。我他妈的为啥要选文科呢。
    后面将介绍的三种排序是线性时间复杂度,因为,它们排序时根本不是通过互相比较来确定大小关系的。

附1:Σ(1/n)=Θ(log n)的证明
    首先我们证明,Σ(1/n)=O(log n)。在式子1+1/2+1/3+1/4+1/5+…中,我们把1/3变成1/2,使得两个1/2加起来凑成一个1;再把1/5,1/6和1/7全部变成1/4,这样四个1/4加起来又是一个1。我们把所有1/2^k的后面2^k-1项全部扩大为1/2^k,使得这2^k个分式加起来是一个1。现在,1+1/2+…+1/n里面产生了几个1呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的扩大后原式各项总和为log n。O(logn)是Σ(1/n)的复杂度上界。
    然后我们证明,Σ(1/n)=Ω(log n)。在式子1+1/2+1/3+1/4+1/5+…中,我们把1/3变成1/4,使得两个1/4加起来凑成一个1/2;再把1/5,1/6和1/7全部变成1/8,这样四个1/8加起来又是一个1/2。我们把所有1/2^k的前面2^k-1项全部缩小为1/2^k,使得这2^k个分式加起来是一个1/2。现在,1+1/2+…+1/n里面产生了几个1/2呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的缩小后原式各项总和为1/2*logn。Ω(logn)是Σ(1/n)的复杂度下界。

附2:log(n!)=Θ(nlogn)的证明
    首先我们证明,log(n!)=O(nlogn)。显然n!<n^n,两边取对数我们得到log(n!)<log(n^n),而log(n^n)就等于nlogn。因此,O(nlogn)是log(n!)的复杂度上界。
    然后我们证明,log(n!)=Ω(nlogn)。n!=n(n-1)(n-2)(n-3)….1,把前面一半的因子全部缩小到n/2,后面一半因子全部舍去,显然有n!>(n/2)^(n/2)。两边取对数,log(n!)>(n/2)log(n/2),后者即Ω(nlogn)。因此,Ω(nlogn)是log(n!)的复杂度下界。

今天写到这里了,大家帮忙校对哦
Matrix67原创
转贴请注明出处]]