瓶魔悖论与不完全信息

    The Bottle Imp 是一则有意思的短篇小说。某日,小说里的主人公遇上了一个怪老头。怪老头拿出一个瓶子,说你可以买走这个瓶子,瓶子里的妖怪就能满足你的各种愿望;但同时,持有这个瓶子会让你死后入地狱永受炼狱之苦,唯一的解法就是把这个瓶子以一个更低的价格卖给别人。如果你是小说里的主人公,你会不会买下这个瓶子呢?你会以什么价格买下这个瓶子呢?
    以什么价格买入这个瓶子,这个问题貌似并不容易回答。你当然不愿意花太多的钱,在你的愿望被满足之前你至少还得给自己留一点钱花;但你也不能花太少的钱,否则你会承担着卖不出去的风险。但是,在做出一些理性的分析后,我们得出了一个惊人的结论:任何人都不应该以任何价格购买这个瓶子。
    和很多博弈问题一样,这一系列的分析首先从最简单的情形开始。首先,你是绝对不能只出 1 分钱就买下这个瓶子的,因为这样的话这个瓶子就永远也卖不出去了——没有比 1 分钱更低的金额了。那么,用 2 分钱买瓶子呢?这样理论上貌似是可行的,但仔细一推敲你会发现还是有问题——这样你只能以 1 分钱卖掉这个瓶子,但没有人会愿意用 1 分钱去买瓶子(否则他就卖不掉了)。因此,用 2 分钱买下瓶子后,你同样找不到下一个买家。和上面的推理一样,用 3 分钱买这个瓶子也不是什么好主意,因为没有人愿意以 1 分钱或 2 分钱购入瓶子,因此你的瓶子不可能卖得掉。依此类推,你不应该以任何价钱去购买这个瓶子,因为每个人都知道,他无法以任何价格卖掉这个瓶子。

Read more…

地球上惊现Sierpinski贝壳?

我一直在思考,利用物理性质和数学算法之间的一些联系,能否设计出某种物理系统可以直接产生出诸如Sierpinski三角形甚至Mandelbrot集一类的分形图形。事实证明,大自然的力量是无穷的。reddit上的一位网友发现一个上面长着Sierpinski三角形模样的贝壳。这到底是为什么呢?难道有什么自然规律正好与Sierpinski三角形的某种生成方法相吻合?

经典证明:推箱子游戏所需步数可达指数级

    今天在写一个稿件时又翻阅了一下Erich FriedmanMath Magic,发现了一个有趣的东西——场地大小为n的推箱子游戏所需要的最少步数最坏情况是多少。下面这个构造说明,最坏情况至少也是指数级的。

    首先,让我们来看看该构造中的一个基本单元:

   

    这个构造中共有6个箱子,且它们都已经在目的位置上了。不难看出:
    1. 假如你人在这个区域之外,你只可能从右上角的出入口进入该区域,从其它地方进去都会导致死局
    2. 从右上角进入后你只能往下走,进入1区;走左边的话直接导致死局
    3. 你可以通过2区前往3区,但若从3区左上角的出口出去了,则2区动过的箱子将永远无法回到原位(除非你原路返回)
    4. 你可以通过2区前往3区,并把3区左边的那个箱子左移一格,再返回2区;这样下次你再从右上角进入该区域时便可以直接经过3区从左上角出去
    5. 最后你只能从4区离开

Read more…