UyHiP趣题:按照盒子的三边长之和来计费有没有漏洞?

    今天的趣题来自 UyHiP 今年十月的趣题

    许多快递公司都依据物件的长、宽、高三边之和来收费,一些航空公司也要求托运行李的三边长相加不能超过某个限制。那么是否有人想过,有没有可能把一个三边之和较大的盒子装进一个三边之和较小的盒子里,从而骗取更低的费用呢?有人会说,恐怕不行吧,长宽高之和更大的盒子体积不也应该更大一些吗?不见得。比方说,盒子 A 的长宽高分别是 10 、 10 、 10 ,盒子 B 的长宽高分别是 9 、 9 、 12.1 。盒子 B 的三边长之和显然比盒子 A 要大,但体积只有 980.1 ,比前者要小近 20 个单位。那么,为什么就不能把盒子 B 沿斜线方向塞进盒子 A 呢?有人会敏锐地发现,在上面的例子中,盒子 A 的体对角线长为 17.3205 ,但盒子B的对角线长度达到 17.5616 ,显然无法完全放进盒子 A 里。不过且慢,我也能举出这样的例子,三边和更大的盒子其体积和对角线都比小的盒子的要小。盒子 A 的长宽高分别为 10 、 10 、 20 ,盒子 B 的长宽高分别为 7.1 、 16.5 、 16.5 。盒子 B 的长宽高之和比盒子 A 大,体积为 1932.98 ,对角线长度比前者小大约 0.1 。看来,为了解决这个问题,我们还需要从一些更巧妙的方面入手。

Read more…

趣题:只允许加倍操作的水桶倒水问题

    今天的题目来自这里。有三个水桶,它们里面分别装了 a 升的水、 b 升的水和 c 升的水(其中 a 、 b 、 c 都是正整数,桶本身没有容量限制)。你可以把水从一个桶倒进另一个桶,但必须保证让后者的水量刚好变成原来的两倍。证明,不管 a 、 b 、 c 是多少,你总能让其中某一个水桶变空。

    例如,假设初始时 (a, b, c) = (3, 2, 1) ,那么你可以先把 (3, 2, 1) 变成 (1, 4, 1) ,再把它变成 (2, 4, 0) ,从而把第三个水桶变空。

Read more…

难倒犹太人的11个数学问题

    这个并不是标题党。很多年以前,要想进入莫斯科国立大学的数学系,你必须通过四项入学考试;头两个都是数学考试,一个笔试,一个面试。在面试中,学生和考官都是一对一的,考官可以自由向学生提出任何他喜欢的问题。考官们都准备了很多“棺材问题”,这些问题的答案非常简单,但由于思路太巧妙了,以至于学生很难想到。考官便可以以“你连这个都没想到”为理由,光明正大地拒绝学校不想要的人(主要是犹太人)。这个 Blog 之前就曾经介绍过这样的问题

    最近网上的一篇文章介绍了 21 个这样的“棺材问题”,其中有些这个 Blog 以前讲过的经典问题,但也有不少我第一次见到的好题。我选取了 11 个比较有意思的问题,在这里和大家分享。

Read more…

趣题:从1到4000中各位数字之和能被4整除的有多少个?

    一个小学奥数老师给我讲了一道小学奥数题,这是他在上课时遇到的:从 1 到 4000 中,各位数字之和能被 4 整除的有多少个?

    注意,问题可能没有你想的那么简单,满足要求的数分布得并没有那么规则。 1 、 2 、 3 、 4 里有一个满足要求的数, 5 、 6 、 7 、 8 里也有一个满足要求的数,但是 9 、 10 、 11 、 12 里就没有了。

    尽管如此,这个问题仍然有一个秒杀解。你能多快想到?

Read more…

趣题:旋转桌子避免灯泡全亮

    网友 @ipondering 分享了一个非常精彩的数学趣题集,里面有很多我之前从没见过的趣题,其中有些问题的题目和解答都相当漂亮。近段时间里,我打算从中选一些最精彩的题目来讲讲。今天的题目是该趣题集中的第二题,原题背景涉及到 King Arthur 和 Merlin 的故事,我就舍去简化了。

    某个国王手下有 n 个大臣。国王定期主持国家会议,届时 n 个大臣将会间隔均匀地坐在圆桌上。每个座位前都有一盏照明灯,只有所有的灯都亮了,会议才能开始进行。如果有些灯没亮,国王会下达指令,让指定位置上的大臣按下座位前的灯的开关,把没亮的灯都打开。例如,当 n = 100 时,圆桌上会坐着 100 个大臣。不妨将座位从 1 到 n 顺序编号,假设其中编号为 3 、 28 、 97 的座位前没有亮灯。于是,国王下令这三个位置上的大臣按下各自面前的开关,把这三盏灯打开,这样才能开始会议议程。

    在这 n 个大臣中,有一个奸臣。这次会议的议题恰好就是商讨对这个奸臣的惩治办法。奸臣知道自己难逃一劫,但他希望能够无限制地拖延会议。他可以在所有大臣就座前精心设置各个照明灯的初始状态,并在国王每次下达指令之后(但在大臣执行命令之前)把圆桌旋转到一个合适的位置,让大臣们按下错误的开关。

    对于哪些 n ,奸臣可以始终保证灯不会全亮,从而无限制地拖延会议?对于哪些 n ,国王可以根据局势巧妙地构造指令,使得有限轮指令之后所有灯必然全亮?

    在会议结束前,奸臣仍然是 n 个大臣中的一员。国王每次只能下达形如“座位编号为 a1, a2, a3, … 的大臣改变各自面前的灯的状态”的指令。奸臣可以任意旋转圆桌,改变灯与大臣的对应关系。当然,他也可以选择不旋转圆桌。即使桌子被旋转过,所有大臣也必须严格遵守国王的指令。

Read more…