下图中的三个绳圈套在一起,没有哪一个绳圈能从中分离出来。不过,真正有趣的是,如果去掉其中任意一个绳圈,那么其他所有的绳圈都全部散开了。如果 n 个绳圈套在一起,并且任意去掉其中一个绳圈都会同时解开其他所有套着的绳圈,我们就把它叫做 n-component Brunnian link 。
你能想出一个 n = 4 的 Brunnian link 吗? n = 5 呢? n 可以任意大吗?
下图中的三个绳圈套在一起,没有哪一个绳圈能从中分离出来。不过,真正有趣的是,如果去掉其中任意一个绳圈,那么其他所有的绳圈都全部散开了。如果 n 个绳圈套在一起,并且任意去掉其中一个绳圈都会同时解开其他所有套着的绳圈,我们就把它叫做 n-component Brunnian link 。
你能想出一个 n = 4 的 Brunnian link 吗? n = 5 呢? n 可以任意大吗?
考虑一个传统的猜数游戏。 A 、 B 两名玩家事先约定一个正整数 N ,然后 A 在心里想一个不超过 N 的正整数 x , B 则需要通过向 A 提问来猜出 A 心里想的数。 B 的问题只有唯一的格式:先列出一些数,然后问 A “x 是否在这些数里”, A 则需要如实回答“是”或者“否”。显然, B 是保证能猜到 x 的,只需要依次询问“x 是否等于 1 ”,“x 是否等于 2 ”即可。由于 B 可以精心选出满足某种特征的所有数,询问 x 是否在这些数里,因而 B 还可以做得更好。例如当 N = 16 时, B 第一次可以问“x 是否小于等于 8 ”,或者等价地,“x 是否属于 {1, 2, 3, 4, 5, 6, 7, 8} ”;接下来,根据 A 的回复继续细问“x 是否小于等于 4 ”或者“x 是否小于等于 12 ”,以此类推。另一种方法则是询问“x 的二进制表达的第一位是否是 1”,“x 的二进制表达的第二位是否是 1”,以此类推,从而获得 x 的二进制表达的所有数位,便能推出 x 来。
现在,有意思的问题来了。假设 A 可以偶尔说谎(但保证不会连续说谎两次),那么 B 还能通过询问猜出 A 所想的数吗?如果愿意的话, B 可以询问任意多次。
从同事那里借来了一本单墫教授主编的《初等数论》奥数书,看到很多精彩的问题,在这里做个笔记,与大家一同分享。不少问题和答案都有过重新叙述,个别问题有所改动。
问题:找出所有使得 2n – 1 能被 7 整除的正整数 n 。
答案:由于 2n 的二进制表达为 1000…00 (n 个 0),因此 2n – 1 的二进制表达为 111…11 (n 个 1)。而 7 的二进制表达是 111 ,要想让它整除 n 个 1 ,显然 n 必须是也只能是 3 的倍数。
这是 2008 年莫斯科数学竞赛中的一个问题。构造一个多边形,使得这个多边形的边界上存在这样的一个点 O :经过点 O 的任意直线均会把该多边形分成面积相等的两部分。这看起来不大可能对吧?但其实构造却并不困难。你能想出来吗?
Using your Head is Permitted 数学谜题站的主持人 Michael Brand 某日收到了来自 R. Nandakumar 的一个谜题:是否有可能把一个矩形剖分成若干个小矩形,使得每个小矩形的形状互不相同,但它们的面积都一样?没有想到,从这个问题出发,加上一些非常机智巧妙的分析与构造,我们能得到越来越多有意思的东西。于是,它就变成了 Using your Head is Permitted 今年 3 月的谜题。看了谜题的答案后,我也被彻底折服,决定把这一系列的思考重述在此,和大家一同分享。为了简便起见,下面的“矩形剖分方案”一律指的是把一个大矩形分割成若干个小矩形的方案。