杨辉三角中的自然底数 e

你相信吗,杨辉三角里竟然也有自然底数 e 的身影。 2012 年, Harlan Brothers 发现了杨辉三角中的一个有趣的事实。不妨把杨辉三角第 n 行的所有数之积记作 sn ,那么随着 n 的增加, sn · sn+2 / sn+12 会越来越接近 e ≈ 2.718 。事实上,我们有:

这是为什么呢? John Baez 在这个网页上给出了一个漂亮的解释。

Read more…

保加利亚单人纸牌游戏

保加利亚单人纸牌游戏(Bulgarian solitaire)的玩法如下:

取出 45 张牌,然后把它们随意分成若干堆。接下来,从每一堆里各取一张牌,叠在一起形成一堆新的牌。不断这样做下去,如果某个时候桌面上正好有 9 堆牌,并且各堆牌数分别为 1, 2, 3, 4, …, 9 ,你就获胜了。

乍看上去,如果初始局面设定不佳,游戏很可能会陷入某个循环,从而永远无法获胜。然而, 1981 年,丹麦数学家 Jørgen Brandt 证明了,对于任意一个初始局面(包括把所有牌摆成 1 堆,以及把所有牌分成 45 堆这样的极端局面),游戏都能在有限步之内获胜。事实上,如果把 45 换成任意一个三角形数 n = 1 + 2 + … + k ,结论仍然成立。

Read more…

立方和公式的一个组合数学证明

    观察下面几个式子:

      13 = 1; (1)2 = 1
      13 + 23 = 9; (1 + 2)2 = 9
      13 + 23 + 33 = 36; (1 + 2 + 3)2 = 36
      13 + 23 + 33 + 43 = 100; (1 + 2 + 3 + 4)2 = 100
      …… ……

    大家应该可以猜到,事实上,对于任意正整数 n ,下述等式永远成立:

      13 + 23 + … + n3 = (1 + 2 + … + n)2

    这个恒等式的证明方法有很多很多,今天我看到了一种有趣的组合证明方法,来源于《Proofs that Really Count》的第 8 章。

Read more…