让我们先从两个小问题开始说起。第一个问题是,是否存在某个无限不循环的 01 串,使得对于任意一个正整数 n ,该 01 串中长度为 n 的子串都有且仅有 n + 1 种?
或许这个问题来得有些突然。让我们慢慢解释一下,这个问题是怎么来的。衡量一个 01 串的复杂程度有很多办法,比方说,我们可以去考察它的“子串复杂度”(subword complexity),即子串的种类有多丰富。我们用 pw(n) 来表示,在一个(有可能无限长的)数字串 w 当中,长度为 n 的子串一共有多少种。例如,对于无限 01 串 α = 000000… 来说,不管 n 是多少, pα(n) 永远都等于 1 ;而对于无限 01 串 β = 001001001… 来说,我们有 pβ(1) = 2 ,并且 pβ(2) = pβ(3) = pβ(4) = … = 3 。
注意,虽然 α 和 β 这两个 01 串都是无限的,但是当 n 的值变得很大时, pα(n) 和 pβ(n) 的值始终很小。当然,这一点也不奇怪,因为 α 和 β 是一种特殊的无限 01 串——无限循环 01 串。对于那些无限不循环的 01 串来说,这种事情就不大可能了。在数字串 γ = 01001000100001… 里,长度为 1 的子串只有 {0, 1} 共 2 种,长度为 2 的子串有 {00, 01, 10} 共 3 种,长度为 3 的子串有 {000, 001, 010, 100} 共 4 种,长度为 4 的子串有 {0000, 0001, 0010, 0100, 1000, 1001} 共 6 种……像这样继续计算下去,我们可以得到序列 pγ(1), pγ(2), pγ(3), pγ(4), … 的前面若干项:
2, 3, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, …
趋势非常明显:随着 n 的增加, pγ(n) 的值也会跟着增加,最终可以增加到任意大。换句话说, pγ(n) 的值没有一个上限。那么,能否找到某个无限不循环的 01 串 w ,使得 pw(n) 的值存在上限呢?不可能!下面我们就来说明,对于任意一个无限不循环的 01 串 w 来说,不管 n 是多少,不等式 pw(n) ≥ n + 1 始终成立。