10个精彩的智力问题

今天考完美国结构语言学,稍微轻松了一些。我把前几天向大家推荐的网页好好看了一遍,挑选了10个比较精彩的、不是很常见的、本Blog之前没有提过的智力题,并且把它们都整理到了一起,与大家一同分享。希望大家能够大呼过瘾~

1. 给一个瞎子52张扑克牌,并告诉他里面恰好有10张牌是正面朝上的。要求这个瞎子把牌分成两堆,使得每堆牌里正面朝上的牌的张数一样多。瞎子应该怎么做?
答案:把扑克牌分成两堆,一堆10张,一堆42张。然后,把小的那一堆里的所有牌全部翻过来。

2. 如何用一枚硬币等概率地产生一个1到3之间的随机整数?如果这枚硬币是不公正的呢?
答案:如果是公正的硬币,则投掷两次,“正反”为1,“反正”为2,“正正”为3,“反反”重来。
如果是不公正的硬币,注意到出现“正反”和“反正”的概率一样,因此令“正反反正”、“反正正反”、“正反正反”分别为1、2、3,其余情况重来。另一种更妙的办法是,投掷三次硬币,“正反反”为1,“反正反”为2,“反反正”为3,其余情况重来。

3. 30枚面值不全相同的硬币摆成一排,甲、乙两个人轮流选择这排硬币的其中一端,并取走最外边的那枚硬币。如果你先取硬币,能保证得到的钱不会比对手少吗?
答案:先取者可以让自己总是取奇数位置上的硬币或者总是取偶数位置上的硬币。数一数是奇数位置上的面值总和多还是偶数位置上的面值总和多,然后总是取这些位置上的硬币就可以了。

Read more…

经典证明:任何可数集都含有不可数个嵌套子集

    你相信吗?对于任意一个可数集,总能找出不可数个子集,使得从中任取两个集合,其中一个都是另一个的真子集。乍看之下,这似乎是不可能的。如果任两个集合之间都具有“其中一个是另一个的真子集”的关系,那它们就能构成一个“集合序列”(准确地说是全序关系),使得每个集合都是由它前面那个集合添加进若干元素得到;换句话说,我们能通过不断往一个空集中添加新的元素依次得到所有这些集合。但是如果这些集合中的元素就只有可数个,那这个“集合序列”中怎么会有不可数个集合呢?然而,涉及到无穷的问题总是那样违背直觉。下面我们只用三行字就能说明,这个命题的的确确是成立的。

Read more…

趣题:某个经典结论的妙用

    空间中有六个点,它们两两间的距离都互不相等。考虑所有以这些点为顶点构成的三角形。证明:存在某个三角形,它的最长边是另外某个三角形中的最短边。
    这个结论并不是显然的。为了说明这一点,只需要注意到同样的结论对n=5的情况是不成立的。考虑平面上一个正五边形的五个顶点(微调它们的位置使得两两间的距离互不相等),容易发现任意三个点所组成的三角形,其最长边都不可能是另一个三角形的最短边。

Read more…

Buffon投针实验:究竟为什么是pi?

    重要通告:最近多次发现我的tom邮箱发出的邮件被识别成了垃圾邮件,是什么原因我还不是很清楚。最近向我的tom邮箱发过邮件但迟迟没有收到回复的朋友麻烦检查一下垃圾邮件箱,或者重新给我发一次邮件,我换一个邮箱回复您。

    数学学习真正悲哀的就是,记住了某个神奇而伟大的定理,看懂了其最严密的推导过程,但却始终没能直观地去理解它。虽然严密的推导是必要的,直观理解往往是不准确的,但如果能悟出一个让定理一瞬间变得很显然的解释,这不但是一件很酷的事,而且对定理更透彻的理解和更熟练的运用也很有帮助。我惊奇地发现,国内的每一本高数课本上都严格地讲解了微积分基本定理的证明,但几乎没有任何一个课本上讲过积分等于函数下方的图形面积究竟是为什么。事实上,这几乎是显然的,但还是有不少人学完微积分后仍然没有意识到。每当谈到这个问题时,我更愿意首先提出一个非常有启发性的事实——圆的周长是2·pi·r,圆的面积就是pi·r^2,后者的导数正好就是前者。这个现象是很容易理解的,因为圆的半径每增加一点,面积增加的就是周长那么一圈,换句话说面积的变化就等于周长。类似地,如果你能找到一个函数g(x),它的导数正好就是f(x),那么当x每增加一点,g(x)就增加了一条小竖线段,显然g(x)就应当是f(x)下方的面积。看清了这一点之后,我们才能欣赏到微积分基本定理真正牛B的地方。原先大家都是用分割求极限的办法来求函数下方的面积,但Leibniz却把面积看作一个可变的整体,用一种办法“一下子”就把它求了出来。有趣的是,这种现在看来如此自然的神奇办法,一千多年来居然没有任何人想到。

Read more…