千万别学数学:最折磨人的数学未解之谜(一)

    数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。

    作为一本数学趣题集, Mathematical Puzzles 一书中竟把仍未解决的数学趣题单独列为一章,可见这些问题有多么令人着迷。我从这一章里挑选了一些问题,在这里和大家分享一下。这本书是 04 年出版的,书里提到的一些“最新进展”其实已经不是最新的了;不过我也没有仔细考察每个问题当前的进展,因此本文的信息并不保证是 100% 准确的,在此向读者们表示歉意。

    这篇文章很长,大家不妨用自己喜欢的方式马克一下,一天读一点。

Read more…

趣题:两两间的距离都是整数的点集

    最多能在平面上找出多少个点,使得它们两两之间的距离都是整数?当然,我们忽略最平凡的解——所有点都在一条直线上。

    三个点的解显然是存在的,只需要构造一个边长为 1 的等边三角形即可。事实上,满足任意两数之和大于第三数的一组整数都可以成为一个三角形的三条边。寻找含有四个点的解也并不困难,一个长为 4 宽为 3 的矩形就能满足要求。不过,我们还有更小一些的解。最小的解貌似是下面这个等腰梯形:上底、下底分别是 3 和 4 ,两腰都是 2 ,两条对角线都是 4 ,正好也都是整数。

      

    那么,能否找到平面上的五个不共线的点,使得两两之间的距离都是整数呢?最多能找到多少个这样的点呢?

Read more…

最帅的Menelaus定理证明方法

  

    Menelaus 定理是平面几何中用于判断三点共线的一个常用定理。在 △ABC 中,点 D 、 E 、 F 分别在 BC 、 AC 、 AB 所在直线上,若 D 、 E 、 F 三点共线,则有 AF/BF · BD/CD · CE/AE = 1 。 Menelaus 定理的证明方法有很多,今天我见到了我所见过的证明方法中最帅的一种,它解决了之前很多证明方法缺乏对称性的问题,完美展示了几何命题中的对称之美。

Read more…

原来函数也是有平方根的

    最近看到一类有趣的问题:如何求解 f(f(x)) = g(x) ?我在网上简单搜索了一下,发现这里面真是大有文章。最先对这个问题进行系统研究的应该是 Hellmuth Kneser ,他把函数迭代的次数扩展到了非整数的情况,求解 f(f(x)) = g(x) 就可以更简单地说成是求解 g(x) 迭代 1/2 次后的结果,更形象的说法就是 g(x) 的“平方根”。 Hellmuth Kneser 还对 f(f(x)) = e^x 的解进行了研究,从之后的数学论文发表情况来看,这也是数学家们最关心的问题。

    e^x 的“平方根”究竟是什么样的呢?不妨假设满足要求的 f(x) 也是一个连续递增的函数,那么它的增长速度必然超过一切多项式函数(否则迭代的结果还是多项式),同时也必然小于一切指数形式的函数。而事实上,求解一个满足要求的 f(x) 并不难;稍作思考,我们就能够给出一个看似有些平凡的答案。

    取任意一个负数,记作 a 。选取任意一个在 (-∞, a] 上单调递增的函数,使得当 x 从 -∞ 增加到 a 时,函数值也从 a 增加到 0 。这样一来,当 x 趋于负无穷时, f(x) 趋于 a , f(f(a)) 就正好趋于 0 了。但 f(a) = 0 ,那么 f(0) 就必须是 e^a ;而考虑到 f(0) = e^a ,那么 f(e^a) 便只能取 1 了。同理,f(1) = e^(e^a),而 f(e^(e^a)) 就等于 e 。以此类推,我们便得到了一连串满足要求的点。我们可以从 (-∞, a] 上的其它点出发,用同样的方法填充上述“端点值”之间的部分,得到满足要求的 f(x) 。

    根据这个思想,我们可以构造出一个具体的 f(x) 来。取 a = -1,在 (-∞, -1] 上定义 f(x) = e^(x+1) – 1,它的函数值正好从 -1 变到了 0 。在 (-1, 0] 上,则有 f(x) = e^(f-1(x)) = e^(ln(x + 1) – 1) = (x + 1)/e 。对于其它的 x ,则递归地定义为 f(x) = e^(f(ln(x))) 。由此我们便得到一个分段函数,正是这个分段的办法才让它夹在了多项式增长和指数级增长之间:

Read more…