网上有各种直观的排序算法图形化演示(见这里和这里),我自己也曾经做过一个。
今天我看到了一个我所见过的最酷的、最可爱的排序算法演示。
某网站被干掉了后,大家会错过很多精彩的视频。我注册了一个土豆网的帐号,把一些精彩的视频搬过来与大家分享。
视频
绝对是有史以来最酷的计算器!
Steffen可活动多面体
大家都知道,三角形具有稳定性。如果你把三根木条钉成一个三角形,则这几根木条是不能活动的。这是因为,根据三角形的SSS全等判定法则,两个三角形的三边长对应相等,则这两个三角形一定全等。但四边形就不是了,用四根一样长的木条钉成一个正方形,握着相对的两个角往两边一拉,正方形就变成菱形了。不知道大家想过没有,类比到三维空间中,多面体的稳定性又是怎样的呢?
Cauchy定理指出,如果两个凸多面体对应的面全等,那么这两个多面体全等。这告诉我们,任何一个凸多面体一定都是不可活动的。在Cauchy定理中,“凸多面体”这一条件是必需的。如果允许凹的多面体存在,对应面相等但整个多面体不全等的形状可以很轻易地构造出来。例如,想象立方体的某个面中心有一个小金字塔,这个金字塔既可以是向外凸的(就像表面上的一根刺),也可以是向内凹的(表面上的一个坑);这是两个截然不同的多面体,但它们的对应面都是相等的。不过,这与我们的稳定性并没有关系,因为它并不是做连续的变形,而是直接一下就“跳”过来了。
很长一段时间,人们曾经猜想,不存在可以做出连续变形且保持所有面不变的“可活动多面体”(Flexible Polyhedron)。1978年,Connelly找到了第一个反例。他给出了一个由18个面组成的可活动多面体。
iHologram:利用手机水平感应功能打造惊人3D效果
手机的水平感应功能可以带给我们很多有趣的东西。这个叫做iHologram的iPhone程序可以利用水平感应显示出一种不可思议的3D效果。这个程序目前仍处于开发阶段。
一些新的视频处理技术
University of Washington的Pravin Bhat上传了一些视频,介绍了一下他正在着手的一些project。下面是其中一个有趣的project:用照片来修正静物摄影的视频。
另外几个project的视频地址:
http://www.vimeo.com/1513186
http://www.vimeo.com/1448831
http://www.vimeo.com/1447119