趣题:不动点与线性代数

    假设 X 、 Y 是两个有限集合,f:X→Y 和 g:Y→X 是两个函数。求证:复合函数 g∘f 和 f∘g 拥有相同数量的不动点(也就是说 g(f(x)) = x 和 f(g(y)) = y 的解的个数相同)。

    下面先提供一个“正常”的解法。观察函数 g∘f 的不动点,可以看出它有以下两个性质:首先,如果某个 x 是 g∘f 的不动点,即 x = g(f(x)) ,那么 f(x) = f(g(f(x))),这就说明 f(x) 是 f∘g 的一个不动点;另外,如果 x1 和 x2 是 X 中两个不同的不动点,则函数 f 不可能把它们映射到 Y 中的同一个元素,否则 g 没办法把它分别还原成 x1 和 x2 。结合上面两点可以看出, f∘g 中的不动点至少和 g∘f 的一样多。

    同理,考察 f∘g 的不动点,可知 g∘f 的不动点至少和 f∘g 的一样多。这就说明了 g∘f 和 f∘g 拥有相同数量的不动点。

Read more…

Cramer悖论:线性代数的萌芽

    在准备前一篇日志时,我查阅了很多经典的悖论。我发现,虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 Cramer 悖论就是一个漂亮的例子。

    在描述 Cramer 悖论之前,让我们先来考虑一个简单的情况。两条直线交于一点。反过来,过一点可以做两条不同的直线。事实上,过一点可以做无数条直线。确定一条直线需要两个点才够。一切都很正常。
    现在,考虑平面上的两条三次曲线。由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

      x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

    这里面一共有 9 个未知系数。代入曲线上的 9 组不同的 (x, y) ,我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。也就是说,平面上的 9 个点唯一地确定了一个三次曲线。这次貌似就出问题了: “两条三次曲线交于 9 个点” 和 “ 9 个点唯一地确定一条三次曲线” 怎么可能同时成立呢?既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?在没有线性代数的年代,这是一个令人匪夷所思的问题。

Read more…

Which Way Did the Bicycle Go 趣题选(中)

14. 有意思的是,在数学历史上,一些很简单的结论竟然几百年来都未曾发现。直到 1977 年, Paul Erdős 和 George Szekeres 才发现,除了两头的 1 以外,杨辉三角同一行内的任意两个数都有公因数。证明这个结论。

答案:只需要注意到, a 乘以一个比 b 小的数之后还能成为 b 的倍数,这说明 a 和 b 一定有公因数。不妨设 0 < i < j < n ,则 C(j, i) < C(n, i) 。我们的命题可以由下述关系直接推出。      C(n, j) · C(j, i) = n! / (j! (n - j)!) · j! / (i! (j - i)!) = n! / (i! (n - j)! (j - i)!) = n! / (i! (n - i)!) · (n - i)! / ((j - i)! (n - j)!) = C(n, i) · C(n-i, j-i)

Read more…

趣题:选取最多的子集使得任两子集恰有一个公共元素

    这里有一个有趣的问题:在集合{1, 2, …, n}中选取尽可能多的子集,使得任意两个子集的交集有且仅有一个元素。例如,当n=7时,选取{1,2,3,4}、{4,5,6,7}、{1,7}这3个集合可以满足条件。子集数还可以更大一点吗?最大是多少?给出一种构造,然后证明这个数目不可能更大了。

    当n=7时,仅仅取3个子集实在是太弱了。一种最简单的办法就可以让子集数达到6,只需取{1,2}、{1,3}、{1,4}、{1,5}、{1,6}、{1,7}即可。再仔细观察,我们发现这个结果还可以进一步改进:我们还可以再往里面添加进一个子集{1},使得这7个子集两两间仍然恰有一个公共元素。这下我们似乎不能再往里面添加任何新子集了。我们还可以做得更好吗?一个新的思路是在{1,2}、{1,3}、{1,4}、{1,5}、{1,6}、{1,7}里面加上{2,3,4,5,6,7},这同样可以让子集数达到7个,可惜我们仍然无法再往里面添加新的子集了。经过若干次尝试后,我们逐渐开始确信,在集合{1, 2, …, n}里面最多只能选出n个两两恰有一个公共元素的子集,并且构造方法无外乎上面两种。这一猜想不但与直觉相符,而且貌似也很好证明。你或许会从一些看似很直观的结论出发开始证明:“显然不可能有两个大小为1的子集”,“选取多个元素个数大于2的子集显然不划算”……但牛B就牛B在,偏偏就有这样一种子集数为n的取法,每个子集里都有不止两个元素,但仍然保证任意两个子集间恰有一个公共元素:

{1,2,3}、{1,4,5}、{1,6,7}、{2,4,7}、{3,4,6}、{3,5,7}、{2,5,6}

    这一个例子对我们的猜想足以构成威胁:子集数为n真的已经到极限了吗?证明结论有那么容易吗?看来,情况貌似比我们想象中的要复杂得多。

Read more…

趣题:完全图K_n最少可以拆成多少个完全二分图?

   

    一个完全图K_n是指一个有n个顶点的图,其中每两个点之间都有一条边相连。一个完全二分图是指这样一种图,图中的顶点分为两个点集L和R,L里的每个顶点都和R里的所有点相连。上图显示了一种把K_5划分为四个完全二分图的方法(分别用红蓝绿灰四种颜色来表示这四个子图)。你觉得,最少可以把完全图K_n划分成多少个完全二分图?给出一种划分方案,并证明这个数目已经不能再少了。

Read more…