环面多面体,即亏格为 1 的多面体,直观地说就是有 1 个洞的多面体。下图中三个多面体里分别有 0 个洞、1 个洞和 2 个洞。第二个多面体就是环面多面体。最近,我在研究一些和环面多面体相关的话题,在这里和大家分享一些我的发现。
环面多面体,即亏格为 1 的多面体,直观地说就是有 1 个洞的多面体。下图中三个多面体里分别有 0 个洞、1 个洞和 2 个洞。第二个多面体就是环面多面体。最近,我在研究一些和环面多面体相关的话题,在这里和大家分享一些我的发现。
四边形 ABCD 是一个正方形,在 BC 上取一个点 M ,在 CD 上取一个点 N ,使得 BM = CN 。连接 AM 、 AN ,与对角线 BD 分别交于 P 、 Q 两点。求证: BP 、 PQ 、 QD 三条线段一定能组成一个三角形,并且这个三角形的其中一个角等于 60° 。
很多看上去很显然的结论,其实是需要严格证明的,并且有时候证明相当困难。比方说算术基本定理,每一个数分解质因数的方法都是唯一的。这看上去几乎是显然的,但证明过程需要很多深刻的数论知识。更极端的例子则是 Jordan 曲线定理,即平面上每一条不与自身相交的封闭曲线都把平面分成了里外两部分。这几乎就是一句废话,但要想严格证明起来相当不容易, Camille Jordan 本人的证明最后发现竟然也是错误的。
最近 MathOverflow 上有人提了一个非常有趣的问题:有那么多结论很显然但证明很困难的定理,那有没有什么结论很不可思议但证明过程却不言而喻的定理呢?
在众人的回答中,呼声最高的就是 Desargues 定理:若三角形 ABC 和 A’B’C’ 中, AA’ 、 BB’ 、 CC’ 所在直线交于一点,则两个三角形中每一组对应边的交点(即 BC 和 B’C’ 的交点 D 、 AC 和 A’C’ 的交点 E 、 AB 和 A’B’ 的交点 F )是共线的。
这个定理看上去太神奇了,大家一定会以为证明很难吧。但事实上,这个定理根本不需要证明,它显然是成立的。现在,把 P-ABC 看成一个三棱锥,而 A’B’C’ 则是一个不平行于底面的截面。由于 AB 、 A’B’ 在同一平面内,因此这两条线会相交;这个交点既在平面 ABC 上,也在平面 A’B’C’ 上,因而也就在两平面的交线上。同理,另外两个交点也都在平面 ABC 和 A’B’C’ 的交线上,因此三个交点共线。当然,画在纸上的也好,照相机照出来的也好,人眼看到的也好,其实都是一个二维图形罢了。因此,命题在平面上也是成立的(这背后的逻辑是,在立体图形的平面投影中,直线仍然是直的,共线的仍然共线,共点的仍然共点;借助射影几何的思想,我们能给出一个更严格的证明)。
这个证明神就神在,当你悟到之后,整个证明过程不但不需要一个字,而且连图形说明都可以不用,只需要盯着原图看,结论自己就跳出来了。看来,我们又多了一种证明问题的思路:盯着问题看,直到它突然一下变得显然成立了为止。
这是一个非常经典的问题:是否存在无穷个互不相交的圆,它们并在一起就是整个三维空间?换句话说,能否用圆形既无重复又无遗漏地填满整个三维空间?
我很早就见过这个问题。我第一次看到这个问题时,显然没能理解到这个问题的精妙之处。当时我在想,这不是显然可以吗?把三维空间想像成无穷个平行平面的并集,而每个平面又可以看作是由无穷多个同心圆组成的,这样一来整个空间不就划分成无穷个不相交的圆了吗?因此,我一直没有认真考虑过这个问题。
直到今天我才想到,上面的方案显然有问题——那些同心圆的圆心不属于任何一个圆。这个最容易想到的构造其实是错误的。看来,这个问题似乎没那么平凡。问题重新摆在了我们面前:究竟能不能把三维空间分成无穷个圆?
Menelaus 定理是平面几何中用于判断三点共线的一个常用定理。在 △ABC 中,点 D 、 E 、 F 分别在 BC 、 AC 、 AB 所在直线上,若 D 、 E 、 F 三点共线,则有 AF/BF · BD/CD · CE/AE = 1 。 Menelaus 定理的证明方法有很多,今天我见到了我所见过的证明方法中最帅的一种,它解决了之前很多证明方法缺乏对称性的问题,完美展示了几何命题中的对称之美。