记09年北大ACM校内赛

    大学生活混起来很快,不知不觉又是一年过去了。去年5月10日的ACM校内赛给我留下了许多美好的回忆,因此今年我主动去报了名(上次是被人给拖去的)。今年有点装怪,题目数量不变,但时间缩短为4个小时。原计划是从8:00做到12:00,结果可能是因为我们所在的7号机房迟迟没有开门,时间临时改成了8:15到12:15。总的来说,今年的题目比去年要糟糕得多,但也不乏一些精彩的题目。

    和去年一样,第一题依旧是所有题目中最科学的一道。题目给定一个不超过2000*2000的网格,你在最左下角的位置(即(0,0)点),你的目的地在(x,y)。要求你的路线不得经过同一个交叉点两次,且不允许左转(题目背景让这个条件顺理成章:街道靠右行,左转不方便),问合法的路线共有多少种。题目难点就是你不一定要走最近的路,完全允许你绕上一大圈;这破坏了有序性,很难构造出递推公式或动态规划模型。稍微画一下图,我们发现了一些显然但很有启发性的规律:每一次右转后,你左手边方向的所有区域都不能再走了,这很可能产生出规模更小的子问题来。另外,所有合法路线必然是有如螺旋线一样的一圈一圈绕着终点走,这种隐藏的有序性也为动态规划提供了可能。但顺着这个思路想下去屡屡碰壁,我猜不少队伍都卡在这儿了吧。

 

    后来我完全打翻前面的全部思路,猛然想到了一个具有决定意义的想法:街道的选取唯一地决定了整个路线。例如,假设我想计算转弯恰好11次的路线有多少条。这样的路线一定含有三条向上走的路、三条向右走的路、三条向下走的路和三条向左走的路。除去第一条路和最后一条路的位置都是确定的,其它的路选在哪一行或者哪一列唯一地决定了整个路线。因此,我们可以用排列组合直接计算出答案来。向上走的路是五选二,向右走的路是七选三,向下走的路是四选三,向左走的路是三选二。把它们各自的选取方案数乘起来就得到了拐弯11次的合法路径。于是,计算所有的路线数只需要从小到大枚举拐弯的次数,每一次计算都是常数的,总复杂度是O(n)的;整个算法的瓶颈反倒是O(n^2)的组合数预处理,不过这个复杂度完全可以承受。

Read more…

矩阵、随机化与分形图形

    Stetson大学的一个非常可爱的MM(以后本Blog将简称她为Stetson MM)和我分享了一个很神奇的东西。她们正在做一个线性代数的课题研究,题目的大致意思是“用矩阵来构造分形图形”。Stetson MM叫我试着做下面这个实验:对于一个坐标点(x,y),定义下面4个矩阵变换:
    
    然后,初始时令(x,y)等于(0,0),按照 T1 – 85%, T2 – 6%, T3 – 8%, T4 – 1% 的概率,随机选择一个变换对该点进行操作,生成的点就是新的(x,y);把它画在图上后,再重复刚才的操作,并一直这样做下去。我心里觉得奇怪,这为什么会得到分形图形呢?于是我写了一个简单的Mathematica程序:
list = {{0, 0}};
last = {{0}, {0}};
For[i = 0, i < 50000, i++, r = Random[];    If[r < 0.85, last = {{0.83, 0.03}, {-0.03, 0.86}}.last + {{0}, {1.5}},      If[r < 0.91, last = {{0.2, -0.25}, {0.21, 0.23}}.last + {{0}, {1.5}},        If[r < 0.99, last = {{-0.15, 0.27}, {0.25, 0.26}}.last + {{0}, {0.45}},          last = {{0, 0}, {0, 0.17}}.last + {{0}, {0}}        ]      ]    ];    list = Append[list, First[Transpose[last]]]; ] ListPlot[list, PlotStyle -> PointSize[0.002]]

    程序运行的结果真的是令我大吃一惊:竟然真的是一个分形图形!!我不禁再次对数学产生了一种崇敬和畏惧感!!

   

Read more…

十个利用矩阵乘法解决的经典题目

    好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。
    不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:
    
    下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:
    

    矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。

经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
    这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。
    

经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。
    由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。

经典题目3 POJ3233 (感谢rmq)
    题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
    这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
    A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)
    应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

经典题目4 VOJ1049
    题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。
    首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
    
    置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差)
    大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31
    根据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:
    

经典题目7 VOJ1067
    我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) – 3f(n-2) + 2f(n-4)的第k项:
    
    利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果
    
    我们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们要做的事情是把第n-1列也填满,将状态转