重要通告:最近多次发现我的tom邮箱发出的邮件被识别成了垃圾邮件,是什么原因我还不是很清楚。最近向我的tom邮箱发过邮件但迟迟没有收到回复的朋友麻烦检查一下垃圾邮件箱,或者重新给我发一次邮件,我换一个邮箱回复您。
数学学习真正悲哀的就是,记住了某个神奇而伟大的定理,看懂了其最严密的推导过程,但却始终没能直观地去理解它。虽然严密的推导是必要的,直观理解往往是不准确的,但如果能悟出一个让定理一瞬间变得很显然的解释,这不但是一件很酷的事,而且对定理更透彻的理解和更熟练的运用也很有帮助。我惊奇地发现,国内的每一本高数课本上都严格地讲解了微积分基本定理的证明,但几乎没有任何一个课本上讲过积分等于函数下方的图形面积究竟是为什么。事实上,这几乎是显然的,但还是有不少人学完微积分后仍然没有意识到。每当谈到这个问题时,我更愿意首先提出一个非常有启发性的事实——圆的周长是2·pi·r,圆的面积就是pi·r^2,后者的导数正好就是前者。这个现象是很容易理解的,因为圆的半径每增加一点,面积增加的就是周长那么一圈,换句话说面积的变化就等于周长。类似地,如果你能找到一个函数g(x),它的导数正好就是f(x),那么当x每增加一点,g(x)就增加了一条小竖线段,显然g(x)就应当是f(x)下方的面积。看清了这一点之后,我们才能欣赏到微积分基本定理真正牛B的地方。原先大家都是用分割求极限的办法来求函数下方的面积,但Leibniz却把面积看作一个可变的整体,用一种办法“一下子”就把它求了出来。有趣的是,这种现在看来如此自然的神奇办法,一千多年来居然没有任何人想到。