我们想要计算无穷级数Σ(1/n)*(-1)^(n+1) = 1 – 1/2 + 1/3 – 1/4 + 1/5 – 1/6 …。首先我们需要说明,这个无穷级数是收敛的。注意到,从1的后面开始,每减去一个数后紧接着都会加上一个比它小的数,因此不管你加到哪儿,它的和始终不会超过1;另外,从1-1/2之后开始,每加一个数紧接着都会减去一个比它小的数,因此无论加到什么位置,整个和始终大于1/2。这说明,这个级数是收敛的,并且它收敛到1/2和1之间的某个数(事实上这个数是ln(2) )。
好了,令这个无穷级数为S,现在对S进行这样的变换:
S = 1 – 1/2 + 1/3 – 1/4 + 1/5 – 1/6 + …
= (1 + 1/3 + 1/5 + 1/7 + …) – (1/2 + 1/4 + 1/6 + 1/8 + …)
= (1 + 1/3 + 1/5 + 1/7 + …) – (1/2 + 1/4 + 1/6 + 1/8 + …) + (1/2 + 1/4 + 1/6 + 1/8 + …) – (1/2 + 1/4 + 1/6 + 1/8 + …)
= (1 + 1/2 + 1/3 + 1/4 + …) – 2 * (1/2 + 1/4 + 1/6 + 1/8 + …)
= (1 + 1/2 + 1/3 + 1/4 + …) – (1 + 1/2 + 1/3 + 1/4 + …)
= 0
但刚才不是说了S是大于1/2的么?这怎么可能呢?