经典证明:Cantor集中的元素两两相加可以遍历[0,2]

    今天看到一个有趣的证明,来源在这里

      

    Cantor 集是一个简单而又神奇的分形图形。把 [0, 1] 三等分,挖去中间那一段(即挖去 (1/3, 2/3) ),然后把剩下两段也都分别进行三等分,并挖去各自中间的一段。这样无限地进行下去,最后得到的极限点集就是 Cantor 集了(上面那张图不是分割线,是 Cantor 集的一个示意图)。我们通常把 Cantor 集记作 C 。Cantor 集具有很多神奇的性质:它的 Lebesgue 测度为 0,但它却包含有不可数个点;它里面的每个点都不是孤点,但它却又是无处稠密的。你可以在这里看到一些具体的分析。

    Cantor 集还有很多其他的性质。若 A 、 B 是两个集合,定义 A + B = {a + b | a ∈ A 并且 b ∈ B} ,也就是 A 中的某个元素与 B 中的某个元素相加可能得到的所有结果。下面我们将证明,C + C = [0, 2]。

Read more…

趣题:平均要取到第几个随机数才会让序列第一次下降

考虑这么一个游戏:不断在区间 [0, 1] 中概率均等地选取随机数,直到所取的数第一次比上一个数小。那么,平均需要抽取多少个随机数,才会出现这样的情况?

 
答案:记 Pi 为第 i 次才取到小于前一个数的数的概率。则我们要求的就是 P1 + 2 * P2 + 3 * P3 + 4 * P4 + … 。妙就妙在下面这个变形(在继续看下去之前你能想到吗):

Read more…

画圈圈和画叉叉的区别

    给你一张纸,要求你在上面画尽可能多的圆圈,使得所有圆圈都不相交。你最多能画多少个?
    显然,你可以画无穷多个圆圈。事实上,你可以画不可数个圆圈——只需要画出一系列半径长均为无理数的同心圆即可。由于每两个无理数之间都夹有有理数,因此任意两个圆都没挨在一块儿。

    给你一张纸,要求你在上面画尽可能多的叉,使得所有的叉都不相交。你最多能画多少个?
    你可以画无穷多个不相交的叉。画法有很多,下图便是一种方案:

  

    现在问题来了:你能在纸上画出不可数个叉吗?如果可以,请给出一种方案;如果不行,证明之。

Read more…

经典证明:任何可数集都含有不可数个嵌套子集

    你相信吗?对于任意一个可数集,总能找出不可数个子集,使得从中任取两个集合,其中一个都是另一个的真子集。乍看之下,这似乎是不可能的。如果任两个集合之间都具有“其中一个是另一个的真子集”的关系,那它们就能构成一个“集合序列”(准确地说是全序关系),使得每个集合都是由它前面那个集合添加进若干元素得到;换句话说,我们能通过不断往一个空集中添加新的元素依次得到所有这些集合。但是如果这些集合中的元素就只有可数个,那这个“集合序列”中怎么会有不可数个集合呢?然而,涉及到无穷的问题总是那样违背直觉。下面我们只用三行字就能说明,这个命题的的确确是成立的。

Read more…

趣题:随机选取两个无穷大的图,求两者相同的概率

    假设我们俩各自独立地随机选取一个有无穷多个顶点的图(两点之间1/2的概率有边1/2的概率没有边)。那么,我们俩选到相同的图的概率是多少?

    令人难以置信、但想通了之后又异常显然的是,两个图相同的概率为1。并且,我可以精确地告诉你,这个相同的图是什么样子的。考虑这样一个无穷大的图,我们用自然数1, 2, 3, …给所有顶点标号,然后如果y的二进制表达中的右起第x位为1,就在顶点x和顶点y之间连一条线。比如,顶点5就和顶点1、顶点3相连。我可以证明,我们俩都100%地会选取到上述这个图。

Read more…