经典证明:几乎所有有理数都是无理数的无理数次方

    一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。如果这个数是有理数,问题就已经解决了。如果这个数是无理数,那么就有:

      

    我们同样会得到一个无理数的无理数次方是有理数的例子。

    这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。那么,真实情况究竟是上述推理中的哪一种呢? Gelfond-Schneider 定理告诉我们,假设 α 和 β 都是代数数,如果 α 不等于 0 和 1 ,并且 β 不是有理数,那么 α 的 β 次方一定是超越数。根据这一定理我们可以立即看出,根号 2 的根号 2 次方真的是一个无理数,实际情况应该是上述推理中的后者。

    那么,是否存在一个无理数 a ,使得 a 的 a 次方是有理数呢?最近, Stan Dolan 证明了这样一个结论:事实上,几乎所有 (1, ∞) 里的有理数都是某个无理数 a 的 a 次方。

Read more…

趣题:用最少的点挡住所有可能的反射路径

    有一个正方形的房间,房间的四壁都是镜子。房间里有一个天使和一个恶魔。假设房间是一个单位正方形 [0, 1] × [0, 1] ,那么天使和恶魔便是这个正方形内的两个点 (a, b) 和 (c, d) 。恶魔想要在原地发射致命激光杀死天使(激光可以无限地在镜子间反射)。天使可以根据恶魔的位置,预先在房间里放置一些守卫为自己挡住激光(守卫实际上也是一个个点)。当然,天使可以在自己周围密密麻麻地放一圈守卫,围成一个封闭的圆形,从而让恶魔不管朝什么方向发射激光,最终都无法击中天使。我们的问题是,能把守卫的数量减少到可数个点吗?能把守卫的数量减少到有限个点吗?

    这是一个非常经典的问题,我已经见过不止一次了。它可以重新叙述为很多更有趣的实际问题。去年的这个时候,网友 Spark 发来邮件,分享了他在看台球比赛时想到的一个问题:最少需要摆放多少个球,才能挡住白球到目标球的所有可能的路线,迫使对手犯规?如果我们把台球也抽象成一个一个的点,问题就和前面提到的情况一样了。

    今天,我终于看到了这个问题的答案,颇为激动,在此和大家分享。

Read more…

用生命游戏来模拟生命游戏

    这是我前几天看到的一个视频。毫无疑问,它是我所见过的各种生命游戏构造中最神奇的一个:

      

    在 LifeWiki 中有一个词条详细介绍了这个构造:它叫做 OTCA metapixel ,是由 Brice Due 在 2005 至 2006 年间构造的。其中,每一个 metapixel 的大小为 2048 × 2048 ,周期为 35328 。

 
视频出处:http://www.youtube.com/watch?v=QtJ77qsLrpw
查看更多:http://www.reddit.com/r/math/comments/lutec/l_i_f_e_c_e_p_t_i_o_n_or_how_to_simulate_the/
如果你喜欢生命游戏,不要错过之前我们介绍过的史上最大的生命游戏构造—— Caterpillar 飞船

千万别学数学:最折磨人的数学未解之谜(二)

    数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。

    今年年初时,我曾经写过一篇名为 千万别学数学:最折磨人的数学未解之谜 的文章,选取并翻译了 Mathematical Puzzles 一书中提到的未解数学谜题。不过,毕竟 Mathematical Puzzles 一书容量有限,没法把所有折磨人的数学猜想都收录进来。后来,我慢慢收集了更多漂亮的数学猜想,今天又见到 MathOverflow 的这个问题,足以凑成一篇新的文章了。于是写下来,和大家一同分享。

Read more…

经典证明:Conway的士兵

    今天听说了 Conway’s Soldiers ,这是 Conway 大牛在 1961 年提出的一个数学谜题(似乎 Conway 的出镜率也太高了),我觉得非常有意思,在这里跟大家介绍一下。内容基本上来自于 Wikipedia 的相关页面

    假设有一个无限大的棋盘。棋盘上可以放置一些象征着士兵的棋子。一个棋子可以跳过并吃掉和它相邻的一枚棋子(就像孔明棋一样)。这是棋子的唯一一种移动方式。现在,在某个位置画一条无限长的水平线,你需要在水平线下面放置足够多的棋子,使得它们前仆后继地往水平线上方跳,最终能够跳到水平线以上 n 个单位的位置。

      

    如图所示,当 n = 1 时,两个棋子就够了。当 n = 2 时,我们需要 4 个棋子。当 n = 3 时,最少需要 8 个棋子。

Read more…