在著名奇书 Gödel, Escher, Bach: An Eternal Golden Braid 的第五章中,为了展现出递推序列的神奇之处,作者 Douglas Hofstadter 定义了这么一个递推序列: G(n) = n – G(G(n – 1)) ,其中 G(1) = 1 。这个序列的前 30 项如下:
n |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
G(n) |
1 |
1 |
2 |
3 |
3 |
4 |
4 |
5 |
6 |
6 |
7 |
8 |
8 |
9 |
9 |
10 |
11 |
11 |
12 |
12 |
13 |
14 |
14 |
15 |
16 |
16 |
17 |
17 |
18 |
19 |
这个数列通常被称作 Hofstadter G-sequence 。它有什么特别的地方呢?如上图,如果把每个标号为 n 的结点都连接到标号为 G(n) 的结点下方,这样的话你将会得到一棵树。从第二行开始算起,各行的结点个数依次为 1, 1, 2, 3, 5, 8, 13, … 正好是著名的 Fibonacci 数列(头两个数都是 1 ,从第三个数开始,每个数都是前两个数之和)。如果我们把第 i 个 Fibonacci 数记作 Fi 的话,上面的规律可以重新表述为:当 n ≥ 2 时,这棵树的第 n 行的结点总个数为 Fn-1 。另外,这棵树的前 n 行的结点总数(也就是第 n 行最右边那个结点的编号)正好等于 Fn+1 ,也是一个个的 Fibonacci 数。对照上面两个事实,你会惊奇地发现,莫非 F1 + F2 + … + Fn-1 + 1 总是等于 Fn+1 ?事实的确如此,上面这个式子对于所有大于等于 2 的正整数 n 均成立。
Read more…