视频推荐:Outside In – 再谈Smale球面外翻问题

    去年的一篇日志里曾经向大家提到了Smale球面外翻问题:在允许与自身相交的情况下,是否有可能无损地、平滑地、不留折痕地把一个球面的内侧翻到外面来。那篇日志里有一个视频,演示了球面外翻的其中一种解法,但没有再进行任何说明和解释。我曾在Google Video上找到了一段完整的视频,可惜Google Video不对中国大陆开放。当时我非常想看一看这段21分钟的视频,但尝试了各种方法都不行,其它地方也没有找到。今天听说中国大陆可以看Google Video的视频了,首先想到的就是去看这段视频。确实太精彩了!!你可以看到球面外翻问题有解的可能性,以及低维情形下(圆的外翻)为何反而无解。后面多个角度多种方式的动画演示足以让你完全理解这个外翻过程中的每个细节。从第11分钟开始的那个add waves则是整个视频的精华所在,太牛B了!


把地址给出来吧,如果上面这个看不了可以进这里面去看:
http://video.google.com/videoplay?docid=-6626464599825291409

神奇的锈规作图:单用一个只能画单位圆的圆规如何作等边三角形

    从古至今,尺规作图一直是数学中备受关注的一个问题。到现在,数学家们已经比较完美的解决了尺规作图的问题,指出哪些图形可以用尺规作图完成,哪些问题不能用尺规作图解决。Mohr-Mascheroni定理告诉了我们一个非常令人吃惊的事实:所有用直尺和圆规可以解决的作图问题,只用圆规也能完成。当然,只用圆规是画不出直线的;但我们可以认为,一条直线已经由两点确定,并不需要画在图上。数学家们向我们展示了:给定四个点,如何用单规找出它们所确定的两条直线的交点;给定一段圆弧和两个点,如何找出两点确定的直线与圆弧的交点。注意到这是直尺仅有的功用,用单规全部解决了后直尺也就不需要了。数学家们还研究过单尺作图:只拿一块直尺到处作直线交过来交过去的又能完成哪些作图问题。显然,只用直尺是不能开平方的,解析几何告诉我们直线与直线的交点只可能是各系数的一个有理表达,这决定了单尺作图不能替代尺规作图。Poncelet-Steiner定理告诉我们,假如事先给定了一个圆和它的圆心,以后只用直尺足以完成任何尺规作图能够解决的问题。这些将在我今后的《什么是数学》笔记中提到。
    昨天,网友浅海里的鱼跟我提到了锈规作图问题,这是我第一次听到这个神奇的东西。现在,假设我们没有直尺,只有一把生锈的圆规。圆规已经被卡住了,只能画出单位半径的圆。在这样的条件下,哪些作图问题仍然能够被解决?锈规作图相当的困难,但并不是没有可能。1983年,D. Pedoe教授惊奇地发现,给定两个点A和B,如果它们的距离小于2,我们可以非常简单地作出点C,使得AC = BC = AB(即△ABC为等边三角形)。

    
    先以A、B为圆心分别作圆。由于它们之间的距离小于2,因此两圆必然相交。以其中一个交点P为圆心作圆,分别交圆A、圆B于点M、N。最后,圆M和圆N的交点即为所求点C。由对称性,△CAB一定是一个等腰三角形。另外,由对称性可知∠ACB=2∠BCP,而圆周角∠BCP的角度又是圆心角∠BNP的一半。由于△BNP是等边三角形,我们可以立即得到∠ACB=∠BNP=60°,△ABC是一个等边三角形。
    D. Pedoe受到启发,提出了以下问题:任给A、B两点,只用锈规是否都能作出C使得AC = BC = AB?若干年后,侯晓荣等人巧妙地解决了这个问题,并以此为基础,借用复数运算等理论,得到了一个出人意料的结论:从给定两点出发,任何尺规作图能够完成的构造,只用锈规也能完成。只用锈规作等边三角形的方法相当精彩,我在这里详细地说一下。觉得牛B的话就在下面叫个“好”。
Read more…

用相同形状的多联骨牌拼接完全对称图形

    最近,Claudio Baiocchi提出了这样一个问题:用相同形状的多联骨牌拼成完全对称图形,问对于哪些多联骨牌问题是有解的。这个问题最早出现在Erich Friedman今年一月的Math Magic里。令人吃惊的是,所有不超过6联的骨牌都是有解的。Erich Friedman自己找到了大多数的解,Corey Plover也找出了一些解,其余的解则是George Sicherman发现的。
    单联到6联的骨牌个数分别为1, 1, 2, 5, 12, 35。它们的解分别如下:

Monomino:

Domino:

Trominoes:

Tetrominoes:

Pentominoes:

Hexominoes:

趣题:构造函数使得平面上任意小的圆内均包含函数上的点

    你认为是否有可能存在这样一个函数f:在平面上随便画一个圆,圆里面总能够找到函数图像上的一个点?继续看下去前,不妨先仔细思考一下。

    为了说明任一圆内都包含函数上的点,我们只需要说明对于平面上任意给定点(x,y),对于任意小的d都能在函数上找到一点,使得其横坐标落在x±d的范围内且纵坐标落在y±d内。这样的话,任意给出一个圆后,我都能保证圆的内接正方形里有点。
    我们构造这个函数f的基本思路是,构造一个将全体有理数映射到全体有理数的函数。注意到有理数是可数的,我们可以用这里的方法将全体有理数和自然数建立一一对应关系。也就是说,我们有了一个定义域为全体自然数、值域为全体有理数的一对一函数R(x),它所对应的函数值是第x个有理数。下面我们开始着手定义我们要求的函数f(x)。函数f(x)的定义域是全体有理数,定义域里的每个x都可以表示成n/m的形式(化到最简),于是我们可以令f(x)=f(n/m)=R(m)。对于任意的y和d,在y±d里肯定存在一个有理数,假如按照上面的对应来看它是第m个有理数(即R(m)),下面我们就想办法说明我们总能够找到一个n,使得n/m在x±d的范围内。当然,如果运气不好m值很小的话我们就挂了,我们很自然地想到,这个m值应该越大越好,最好能重新定义一个值域为全体有理数的函数,对任一给定的有理数我们都能找出任意大的m对应到它。然后我们想到定义一个多对一的、定义域和值域都是自然数的函数H(x):
x    1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 …
H(x) 1  1  2  1  2  3  1  2  3  4  1  2  3  4  5 …

    重新定义f(x)=f(n/m)=R(H(m)),这样的话任意给定一个有理数,我们可以找到任意大的m使得R(H(m))等于这个有理数。当m足够大时,m(x-d)和m(x+d)之间一定会出现一个整数n,则此时n/m在x±d的范围内。
    但我们又遇到一个问题:要是找到的那个n始终不能和m互质(表明没化到最简)咋办?我的直觉是,这种极端的情况应该是不存在的,当m充分大时,总有一个满足要求的n/m出现。但我没有严格证明它。其实,我根本不需要去证明它;这个题目有趣就有趣在,我这个函数f是可以随便构造的。你或许在想,要是分母m为质数就好了。那好,我就可以强迫分母m为质数。定义一个定义域为全体质数,值域为全体正整数的函数P(x),它表示x是第几个质数:
x    1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 …
P(x) –  1  2  –  3  –  4  –  –  –  5  –  6  –  – …

    重新定义f(x)=f(n/m)=R(H(P(m))),现在我们能够找到任意大的质数m使得R(H(P(m)))等于指定的有理数。当m足够大时,m(x-d)和m(x+d)之间一定会出现两个相邻的整数p和q,由于m是质数,p和q之间总有一个数与m互质(不可能都是m的整倍数),我们需要的n也就找到了。

满足要求的函数有很多。这只是其中一种构造方法。大家能不能再想一些更有趣的构造来?
来源:http://www.douban.com/group/topic/2561708/
参考网友yushih的解答

最近重新整理了日志Tag。如果你喜欢这篇文章,不要错过这里的惊奇数学事实,你会看到更多难以置信的数学结论。