经典证明:任何正整数着色方案中都含任意长的单色等差数列

    我们知道,存在这样一种全体正整数的红蓝二着色方案,其中没有任何无穷长的等差数列满足数列中的所有数颜色都一样。它的构造非常暴力。有趣的是,把上述命题中的“无穷长”换成“任意长”,命题就不见得仍然正确了。事实上,Van der Waerden定理告诉我们,对于任意大的k,总存在一个N,使得对从1到N的正整数进行红蓝二染色后,里面总存在一个单色的长为k的等差数列。当命题扩展到任意c着色时,该命题竟然也都成立。证明主要用了鸽笼原理和数学归纳法,证明过程直观而又有趣。

    我们首先来证明k=3的情况:存在某个N使得对N个连续自然数进行二染色后里面总有长为3的单色等差数列。我们把全体正整数5个5个地分组,1..5为第一组,6..10为第二组,以此类推。每一组里总共有2^5种不同的染色方案,因此在前2^5+1组里面必然有两个组的染色一模一样,比方说第7组和第23组吧。把第7组里的数记作A_1, A_2, …, A_5,由鸽笼原理,A_1, A_2, A_3里面一定存在两个颜色相同的数,不妨设A_1和A_3都是红色吧。考虑A_5的颜色:如果它是红色,我们的问题就解决了,A_1, A_3, A_5已经是一个长度为3的等差数列。下面考虑A_5是蓝色的情况。别忘了第7组和第23组的染色完全相同,因此在第23组中,B_1, B_3也是红色,B_5也是蓝色。下面我们来考虑全体正整数的第39组(7,23,39是等差数列),我们把它记为C_1, C_2, …, C_5。考虑C_5的颜色:如果它是红色,那A_1, B_3, C_5就是一个全为红色的等差数列,否则A_5, B_5, C_5就是一个全为蓝色的等差数列。显然,上述证明中的“最坏情况”就是,第1组和第33组的染色相同,且第1组的第1个数和第33组的第3个数是红色,则下一个数最远可以是第65组的第5个数,即全体正整数的第325个数。换句话说,k=3时N=325即满足条件。

Read more…

趣题:对全体正整数红蓝二着色使之不含单色无穷等差数列

    你认为,是否有可能把全体正整数染成红蓝二色,使得不存在无穷等差数列,数列中的所有数都是一种颜色?如果你认为存在这样的染色方案,请给出一个构造方法;如果你认为不存在,证明之。在看下面的答案之前,不妨先仔细思考一下。

    事实上,满足题意的染色方案是存在的,构造方法非常简单,非常直接,非常暴力。显然,无穷等差数列只有可数个,不妨把它们分别叫做A_1, A_2, A_3, …。现在,如果我们能够构造两个数列r_1, r_2, r_3, …和b_1, b_2, b_3…,使得对于每一个i,r_i和b_i都在数列A_i中,并且r数列中的每个数都和b数列中的所有数都不相同。这样,把r数列中的所有数染成红色,把b数列中的所有数染成蓝色(其它未出现的数随意染色),就能保证每个无穷等差数列都包含了至少两种颜色。
    而这样的r数列和b数列显然存在,因为每一次选择新的r_i和b_i时,无穷数列A_i中都只有有限个数不能选,因此r_i和b_i永远都有选的。

    Update: 地基层网友给出了一个更巧妙、更简单的构造方法:对全体正整数倍长间隔染色,即把1染成红色,2和3染成蓝色,4到7染成红色,8到15染成蓝色……。显然,当染色区间的长度大于公差时,等差数列最终都将一截一截地落在不同的染色区间中。

Read more…

从“迷失的8”到生成函数:小数展开的秘密

    小学时经常在计算器上面按12345679这个神秘的8位数。这个数牛就牛在,它乘以9的结果正好等于111111111。你可以在计算器上输好12345679,然后问MM“你的幸运数字是多少”;如果她说“7”,你就在计算器上按“乘以63”,计算器上将会显示出清一色的7字,看上去无比壮观。
    假如123456789×9=1111111111的话,我倒不会觉得奇怪。网上流行过一个火星帖子,写了一大堆诸如111111111 * 111111111 = 12345678987654321的式子来展示数学之美,以至于大家会认为123456789×9的结果也一定是一串很有规律的数字。因此,如果我不在这里说一句123456789×9其实并不等于1111111111的话,估计很多人都发现不了问题。事实上,123456789×9=1111111101,偏偏就差一个“1”。而怪就怪在,去掉被除数中的数字“8”,偏偏又有了12345679×9=111111111,一个极其别扭的算式反而得到了完美的结果。不要让你的直觉被数学之美所蒙蔽,数学上有大量出人意料的、看上去很不对称的结论。
    为什么偏偏要少一个“8”呢?难道这真的是算术中的一个不可抹去的疤痕?我们急需要寻求一个解释,填补上算术中的这个不和谐的“漏洞”。一种解释是,我们看到了123456789×9=1111111101并不美观,想要对其进行改造,进而得到(123456789+1)*9 = 1111111101+9 = 1111111110,于是(123456789+1)*9/10 = 12345679*9 = 111111111。用这种办法的确可以解释“迷失的8”,不过这个解释并不漂亮。为了寻求一个更好的解释,我们来看一看111111111和9的关系。

Read more…

实分析中的反例(上)

    我对各种违背直觉的函数构造特别有兴趣,看看这里你就知道我对这些特殊函数有多痴迷了。因此,当我发现竟然有专门收集各种特殊函数的数学书时,可以想象我的心情有多激动。我试着以“反例”为关键字在图书馆进行检索,借了一大堆实分析数学书。这些书都已经很老了,封皮烂了又烂,已经修修补补重装了两三次封皮。翻翻这些老书,不由得对老一辈的学者和作家表示由衷的崇敬;虽然文字、排版都不出彩,但书的容量极大,内容也很实在。
    废话不多说了,让我们来欣赏一下书里的一些精彩篇章吧。

Read more…

趣题:扫雷定理 互补棋盘上的数字和相等

    这是一个与扫雷游戏有关的非常好玩的问题。给定一个扫雷布局,定义它的“补集棋盘”为这样一个新布局,原来有雷的地方现在是空地,原来没有雷的地方现在都是雷。在棋盘的每块空地上都标有一个数字,它表示周围的8个方块中有多少颗雷。一个美妙的结论是,两个互补棋盘布局上的数字和是相等的。乍看之下似乎不可思议,但仔细一想便豁然开朗。你能想到这是为什么吗?

  

Read more…