假设我们俩各自独立地随机选取一个有无穷多个顶点的图(两点之间1/2的概率有边1/2的概率没有边)。那么,我们俩选到相同的图的概率是多少?
令人难以置信、但想通了之后又异常显然的是,两个图相同的概率为1。并且,我可以精确地告诉你,这个相同的图是什么样子的。考虑这样一个无穷大的图,我们用自然数1, 2, 3, …给所有顶点标号,然后如果y的二进制表达中的右起第x位为1,就在顶点x和顶点y之间连一条线。比如,顶点5就和顶点1、顶点3相连。我可以证明,我们俩都100%地会选取到上述这个图。
假设我们俩各自独立地随机选取一个有无穷多个顶点的图(两点之间1/2的概率有边1/2的概率没有边)。那么,我们俩选到相同的图的概率是多少?
令人难以置信、但想通了之后又异常显然的是,两个图相同的概率为1。并且,我可以精确地告诉你,这个相同的图是什么样子的。考虑这样一个无穷大的图,我们用自然数1, 2, 3, …给所有顶点标号,然后如果y的二进制表达中的右起第x位为1,就在顶点x和顶点y之间连一条线。比如,顶点5就和顶点1、顶点3相连。我可以证明,我们俩都100%地会选取到上述这个图。
大家在玩俄罗斯方块的时候有没有想过这样一个问题:如果玩家足够牛B的话,是不是永远也不可能玩死?换句话说,假设你是万恶的游戏机,你打算害死你面前的玩家;你知道任意时刻游戏的状态,并可以有针对性地给出一些明显不合适的方块,尽量迫使玩家面对最坏情况。那么,你有没有一种算法能保证害死玩家,或者玩家无论如何都存在一种必胜策略呢?注意,俄罗斯方块的游戏区域是一个宽为10,高为20的矩形,并且玩家可以预先看到下一个给出的方块是什么。在设计策略时,你必需考虑到这一点。
相信很多人有过这样的经历:玩俄罗斯方块时一开局就给你一个“S”型方块,让完美主义者感到异常别扭;结果,第二个方块还是这个“S”,第三个方块依旧是“S”,相当令人崩溃。于是,我们开始猜测,如果游戏机给你无穷个“S”形方块,玩家是不是就没有解了?答案是否定的。如图1,从第10步开始,整个局面产生一个循环;只要机器给的一直都是“S”方块,玩家可以不断重复这几个步骤,保证永远也死不了。
不过,这个循环是在游戏场地清空了的情况下才产生的。有人会进一步想了,要是在玩着玩着,看着你局势不好时突然给你无穷多个“S”方块呢?事实上,此时局面的循环依然可能存在,如图2。在第5个“S”形方块落地后,循环再次产生。
今天在写一个稿件时又翻阅了一下Erich Friedman的Math Magic,发现了一个有趣的东西——场地大小为n的推箱子游戏所需要的最少步数最坏情况是多少。下面这个构造说明,最坏情况至少也是指数级的。
首先,让我们来看看该构造中的一个基本单元:
这个构造中共有6个箱子,且它们都已经在目的位置上了。不难看出:
1. 假如你人在这个区域之外,你只可能从右上角的出入口进入该区域,从其它地方进去都会导致死局
2. 从右上角进入后你只能往下走,进入1区;走左边的话直接导致死局
3. 你可以通过2区前往3区,但若从3区左上角的出口出去了,则2区动过的箱子将永远无法回到原位(除非你原路返回)
4. 你可以通过2区前往3区,并把3区左边的那个箱子左移一格,再返回2区;这样下次你再从右上角进入该区域时便可以直接经过3区从左上角出去
5. 最后你只能从4区离开
我们上次说到,不是所有的平面图都是可4选择的。于是人们接着猜想,是不是所有平面图都是可5选择的呢?1994年,Carsten Thomassen证明了,所有平面图都是可5选择的。这个证明极其简单,论文全文不足两页,证明过程仅十多行。证明对平面图中的区域数n施归纳。有趣的是,归纳的命题比我们待证明的命题要强得多,否则原命题反而证不到。
为简便起见,我们假设平面图是一般的,它没有同属于四块区域的交界点,也没有中空的“洞”。加入这些条件不会让问题变得更简单,因此这些假设都是合理的。下面再假设最外面那一圈区域(与“外部空间”相邻的区域)有s个,它们彼此相连构成了一个环,我们按逆时针顺序把它们分别记为P_1, P_2, P_3, …, P_s。无妨设P_1和P_2的颜色分别为1和2。下面我们证明一个比原命题更强的结论:若最外面那s个区域的颜色列表中至少有三个颜色,其余那些(被围在内部的)区域的颜色列表中有五个颜色,则一定存在合法的列表染色。当区域数n足够小时结论显然成立。
四色定理告诉我们,给地图上的每个区域涂一种颜色,为了使相邻的区域有不同的颜色,我们总共只需要4种颜色就够了。不过,万一有些省装怪,偏不喜欢分配给它的颜色该咋办?这下问题就变得有意思起来了。为了满足不同省市的要求,国家测绘局可以在为地图染色前先让每个省市列出自己能够接受的几种颜色,染色时就只从每个省市给出的候选颜色中取色。我们把每一个使得相邻区域的颜色互不相同的染色方案叫做一种列表染色(list coloring)。现在的问题是,至少要求每个省市列出多少个候选颜色才能使合法的列表染色总是存在,不管这些颜色列表是什么?如果每个省市列出k种颜色就足够了,我们就称该地图是可k选择的(k-choosable)。或许大家会想,k=4就够了吧,毕竟四色定理保证了只使用4种颜色一定能实现合法的染色,而在列表染色问题里总的颜色很可能还不止4种,同时相邻区域的公共颜色数量也将减少。但是,数学家们早就注意到,能够k着色的平面图不见得就一定可以k选择。例如,下面这个图显然可以二着色,但它就不是二选择的——如果每个区域的颜色列表如图中所示,则不存在满足要求的列表染色。因此,人们普遍认为,并不是每个平面图都是可4选择的。
不过,数学家们一直没能找到不可4选择的平面图。1993年,Voigt发现了第一个不能4选择的平面图,它有238块区域。构造方法非常具有启发性,从里面能看到不少数学思维方法。