Conway常数是怎么得来的?

    在所有寻找数字规律的谜题中,下面这个难题可能是最有意思的题目之一了:

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ⋯⋯
上面这个数列有什么规律?

    若你是第一次听到这个问题,你一定会非常喜欢问题的答案:下一个数是对上一个数的描述,比方说 1211 里有 “ 1 个 1 , 1 个 2 , 2 个 1 ” ,那么 111221 就是它的下一个数。通常我们把这个数列叫做“外观数列”。
    作为一个让人拍案叫绝的智力游戏,外观数列的故事似乎就已经到此为止了。可是,人们渐渐发现,外观数列里面还大有文章可做。例如,数列中的数虽然会越来越长,但数字 4 始终不会出现。这些优雅的性质成功地引来了数学家们的围观。在对外观数列的研究中,最引人注目的成果之一要归功于英国数学家 John Conway 。 1987 年, John Conway 发现,在这个数列中,相邻两数的长度之比越来越接近一个固定的数。最终,数列的长度增长率将稳定在 30% 左右。事实上,如果把数列中第 n 个数的长度记作 L_n ,则当 n 趋于无穷大的时候, L_(n+1) / L_n 将趋于一个极限。 John Conway 把这个极限用希腊字母 λ 表示,并证明了这个数是 71 次方程

x^71 – x^69 – 2*x^68 – x^67 + 2*x^66 + 2*x^65 + x^64 – x^63 – x^62 – x^61 – x^60 – x^59 + 2*x^58 + 5*x^57 + 3*x^56 – 2*x^55 – 10*x^54 – 3*x^53 – 2*x^52 + 6*x^51 + 6*x^50 + x^49 + 9*x^48 – 3*x^47 – 7*x^46 – 8*x^45 – 8*x^44 + 10*x^43 + 6*x^42 + 8*x^41 – 5*x^40 – 12*x^39 + 7*x^38 – 7*x^37 + 7*x^36 + x^35 – 3*x^34 + 10*x^33 + x^32 – 6*x^31 – 2*x^30 – 10*x^29 – 3*x^28 + 2*x^27 + 9*x^26 – 3*x^25 + 14*x^24 – 8*x^23 – 7*x^21 + 9*x^20 + 3*x^19 – 4*x^18 – 10*x^17 – 7*x^16 + 12*x^15 + 7*x^14 + 2*x^13 – 12*x^12 – 4*x^11 – 2*x^10 + 5*x^9 + x^7 – 7*x^6 + 7*x^5 – 4*x^4 + 12*x^3 – 6*x^2 + 3*x – 6 = 0

    的唯一实数解,它约为 1.303577 。这就是传说中的 Conway 常数。

Read more…

比乘法更大的是乘方,比乘方更大的是什么?

    小学时,老师说,由于生活中经常需要把同一个数加很多很多次,因此人们发明了乘法。 a × b 就表示 b 个 a 相加。初中时,老师说,由于生活中经常需要把同一个数乘很多很多次,因此人们发明了乘方。 a ^ b 就表示 b 个 a 相乘。令人失望的是,到了高中时,我们并没有学到更牛 B 的运算符号;大学都快学完了,似乎也没见到乘方升级的苗头。乘方之上究竟是什么?下面,有请今天的主角——超级幂——登场!

    很容易想到,比乘方更大一级的运算就是把 b 个 “a 次方” 重叠起来。不过,这里我们却遇到了一个之前不曾遇到的问题: a ^ a ^ a 究竟应该等于 (a ^ a) ^ a ,还是 a ^ (a ^ a) ?。我们不妨来算一算,不同算法得到的结果相差多远:

(2 ^ 2) ^ 2 = 4 ^ 2 = 16
2 ^ (2 ^ 2) = 2 ^ 4 = 16

    难道两种不同的计算顺序,得到的结果总是相同的吗?让我们换 a = 3 试试:

(3 ^ 3) ^ 3 = 27 ^ 3 = 19683
3 ^ (3 ^ 3) = 3 ^ 27 = 7625597484987

    哇,这下可就差远了。可以想象,如果把 “a 次方” 再多迭代几次,从右往左算和从左往右算会差得更多。恐怖的是,当有多重指数时,运算正是按照从右往左算的顺序进行的。试想,若有一种运算专门用来表示 b 个 a 构成的指数塔,这种运算的威力会多大。

Read more…

画圈圈和画叉叉的区别

    给你一张纸,要求你在上面画尽可能多的圆圈,使得所有圆圈都不相交。你最多能画多少个?
    显然,你可以画无穷多个圆圈。事实上,你可以画不可数个圆圈——只需要画出一系列半径长均为无理数的同心圆即可。由于每两个无理数之间都夹有有理数,因此任意两个圆都没挨在一块儿。

    给你一张纸,要求你在上面画尽可能多的叉,使得所有的叉都不相交。你最多能画多少个?
    你可以画无穷多个不相交的叉。画法有很多,下图便是一种方案:

  

    现在问题来了:你能在纸上画出不可数个叉吗?如果可以,请给出一种方案;如果不行,证明之。

Read more…

能平铺平面,却不能周期性地平铺平面

    看看自己脚下的地板——虽然正方形、长方形、正六边形等图形都能平铺整个平面,但平铺的方式却非常无聊,不过是同一种模式不断重复罢了。有没有什么“非平凡”的平铺方案呢?下面就给大家看这样一个图形,加上一些限制条件之后,它仍然能够平铺整个平面,不过平铺出来的结果却非常神奇——它并不能通过简单的重复得到,也就是说它不具有周期性。
    下图就是这个传说中的地板砖(及其镜像):

  

    拼接时有两个要求:

      (1) 黑色的线条必须连在一起
      (2) 一条边两端的紫色小旗必须朝向相同的方向(如箭头所示,注意两个小旗来自于两个不相邻的砖块)

  

Read more…

那些神秘的数学常数

    我一直觉得,数学中的各种常数是最令人敬畏的东西,它们似乎是宇宙诞生之初上帝就已经精心选择好了的。那一串无限不循环的数字往往会让人陷入一种无底洞般的沉思——为什么这串数字就不是别的,偏偏就是这个样呢。除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。今天,就让我们一起来看一看,数学当中到底有哪些神秘的无理常数。

 
2 ≈ 1.4142135623730950488

    古希腊的大哲学家 Pythagoras 很早就注意到了数学与大千世界的联系,对数学科学的发展有着功不可没的贡献。他还创立了在古希腊影响最深远的学派之一—— Pythagoras 学派。 Pythagoras 学派对数字的认识达到了审美的高度。他们相信,在这个世界中“万物皆数”,所有事物都可以用整数或者整数之比来描述。
    第一个无理数 √2 的发现者就是一位 Pythagoras 学派的学者,他叫做 Hippasus 。据说,一日 Hippasus 向 Pythagoras 提出了这样的问题:边长为 1 的正方形,对角线长度能用整数之比来表示吗? Pythagoras 自己做了一些思考,证明了这个数确实无法用整数之比来表示。由于这一发现触犯了学派的信条,因此 Pythagoras 杀害了 Hippasus 。
    利用勾股定理可知,这个数是方程 x^2 = 2 的唯一正数解,我们通常就记作 √2 。 √2 可能是最具代表性的无理数了,我们之前曾经介绍过很多 2 的无理性的证明。无理数的出现推翻了古希腊数学体系中的一个最基本的假设,直接导致了第一次数学危机,整座数学大厦险些轰然倒塌。
    无理数虽说无理,在生产生活中的用途却是相当广泛。例如,量一量你手边的书本杂志的长与宽,你会发现它们的比值就约为 1.414 。这是因为通常印刷用的纸张都满足这么一个性质:把两条宽边对折到一起,得到一个新的长方形,则新长方形的长宽之比和原来一样。因此,如果原来的长宽比为 x : 1 ,新的长宽比就是 1 : x/2 。解方程 x : 1 = 1 : x/2 就能得到 x = √2

Read more…