超级游戏悖论:千万别说“让我们来玩一个游戏”

    今天听说了一个非常有趣的思想实验——超级游戏( Hypergame ,暂且让我翻译成“超级游戏”吧)。首先,如果一个游戏能在有限步之内分出胜负,我们就把它叫做“有限游戏”。注意,一个有无穷多种状态的游戏也可以是有限游戏。虽然每一步的决策无穷多,但只要能在有限步内结束游戏,我们都把它叫做有限游戏。举个例子,玩家 1 和玩家 2 游戏,玩家 1 说出任意一个正整数 N ,然后立即获胜。这个游戏的决策有无穷多,但它显然是有限游戏。另外,一个有限游戏的总步数甚至也可以没有上限。比如说,玩家 1 说出任意一个正整数 N ,然后玩家 2 说 N – 1 ,玩家 1 说 N – 2 ,以此类推,两人轮流倒数,谁数到 0 谁就获胜。结束这个游戏所需要的步数可以是任意多,但只要是有限的,我们都把它叫做有限游戏。

    下面,我们来看这个叫做“超级游戏”的游戏。在超级游戏中,首先,玩家 1 指定一个有限游戏,然后玩家 2 作为这个有限游戏的先行者与玩家 1 对弈。谁赢得了这个有限游戏,也就是这局超级游戏的获胜者。

    这个异想天开的游戏可以说是一下子打开了我们的思路,很多再正常不过的事情此时都变得有争议了。比如说,超级游戏的决策树是什么样子的?超级游戏算是组合游戏吗?甚至是问,超级游戏本身是一个有限游戏吗?

Read more…

集数学与艺术于一体的几何幻方

Lee Sallows 最近做了一个网站,收集了很多在几何意义上也成立的幻方,集数学与艺术于一体,为传统意义的幻方赋予了新的生命。大家来欣赏一下吧。

 

这是一个幻方,它由九块积木组成。这些积木所含的小方格数分别是 2, 6, 8, 10, 12, 14, 16, 18, 22,每行每列和两对角线上的方格总数都是 36 。 牛 B 的是,每条线上的三块积木正好也都能拼成一个 6 × 6 的矩形。

Read more…

千万别学数学:最折磨人的数学未解之谜(一)

    数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。

    作为一本数学趣题集, Mathematical Puzzles 一书中竟把仍未解决的数学趣题单独列为一章,可见这些问题有多么令人着迷。我从这一章里挑选了一些问题,在这里和大家分享一下。这本书是 04 年出版的,书里提到的一些“最新进展”其实已经不是最新的了;不过我也没有仔细考察每个问题当前的进展,因此本文的信息并不保证是 100% 准确的,在此向读者们表示歉意。

    这篇文章很长,大家不妨用自己喜欢的方式马克一下,一天读一点。

Read more…

趣题:两两间的距离都是整数的点集

    最多能在平面上找出多少个点,使得它们两两之间的距离都是整数?当然,我们忽略最平凡的解——所有点都在一条直线上。

    三个点的解显然是存在的,只需要构造一个边长为 1 的等边三角形即可。事实上,满足任意两数之和大于第三数的一组整数都可以成为一个三角形的三条边。寻找含有四个点的解也并不困难,一个长为 4 宽为 3 的矩形就能满足要求。不过,我们还有更小一些的解。最小的解貌似是下面这个等腰梯形:上底、下底分别是 3 和 4 ,两腰都是 2 ,两条对角线都是 4 ,正好也都是整数。

      

    那么,能否找到平面上的五个不共线的点,使得两两之间的距离都是整数呢?最多能找到多少个这样的点呢?

Read more…