今天听说了一个非常有趣的思想实验——超级游戏( Hypergame ,暂且让我翻译成“超级游戏”吧)。首先,如果一个游戏能在有限步之内分出胜负,我们就把它叫做“有限游戏”。注意,一个有无穷多种状态的游戏也可以是有限游戏。虽然每一步的决策无穷多,但只要能在有限步内结束游戏,我们都把它叫做有限游戏。举个例子,玩家 1 和玩家 2 游戏,玩家 1 说出任意一个正整数 N ,然后立即获胜。这个游戏的决策有无穷多,但它显然是有限游戏。另外,一个有限游戏的总步数甚至也可以没有上限。比如说,玩家 1 说出任意一个正整数 N ,然后玩家 2 说 N – 1 ,玩家 1 说 N – 2 ,以此类推,两人轮流倒数,谁数到 0 谁就获胜。结束这个游戏所需要的步数可以是任意多,但只要是有限的,我们都把它叫做有限游戏。
下面,我们来看这个叫做“超级游戏”的游戏。在超级游戏中,首先,玩家 1 指定一个有限游戏,然后玩家 2 作为这个有限游戏的先行者与玩家 1 对弈。谁赢得了这个有限游戏,也就是这局超级游戏的获胜者。
这个异想天开的游戏可以说是一下子打开了我们的思路,很多再正常不过的事情此时都变得有争议了。比如说,超级游戏的决策树是什么样子的?超级游戏算是组合游戏吗?甚至是问,超级游戏本身是一个有限游戏吗?