今天听说了 Fitch 可知性悖论,在这里给大家讲一讲。这是由美国逻辑学家 Frederic Fitch 在 1963 年的一篇论文中提出来的。在这篇论文中, Fitch 利用严密的数理逻辑得出了一个看上去很不可思议的结论:假设所有知识都是人类有可能掌握的,那么所有知识都已经被人类掌握了。
为了表达“能掌握的知识”这一概念,我们需要用到模态逻辑。模态逻辑中允许出现这样一种情况:一个命题是假的,但是它有可能是真的。比方说,命题“一加一等于三”是假的,而且它不可能是真的;命题“朝鲜在 2010 年世界杯中获得冠军”是假的,但它却有可能是真的。这两种情况的区别可以从平行宇宙的角度来解释。前者可以在逻辑上被推翻,在任何一个平行宇宙中都不成立;后者虽然在我们的世界中是假的,但却不排除在其它世界中为真的可能。在模态逻辑中,“明天可能会下雨”也能成为一个合法的命题。
下面,我们用 K(φ) 表示人类已经知道了 φ 为真(也就是说 φ 在人类的知识库中)。因而, ¬K(φ) 就表示人类不知道 φ 。再用 P(φ) 表示 φ 有可能为真(在至少一个平行宇宙中成立)。因而, ¬P(φ) 就表示 φ 不可能为真,P(K(φ)) 就表示人类有可能知道 φ 为真。我们作出以下四个假设: