实分析中的反例(上)

    我对各种违背直觉的函数构造特别有兴趣,看看这里你就知道我对这些特殊函数有多痴迷了。因此,当我发现竟然有专门收集各种特殊函数的数学书时,可以想象我的心情有多激动。我试着以“反例”为关键字在图书馆进行检索,借了一大堆实分析数学书。这些书都已经很老了,封皮烂了又烂,已经修修补补重装了两三次封皮。翻翻这些老书,不由得对老一辈的学者和作家表示由衷的崇敬;虽然文字、排版都不出彩,但书的容量极大,内容也很实在。
    废话不多说了,让我们来欣赏一下书里的一些精彩篇章吧。

Read more…

随记:普遍性验证、数学思维、代数基本定理及其它

    大学生活的乐趣不光体现在吃喝玩乐上,更重要的是它所提供的自由学习的场所。你可以在网上搜索课表,看看什么时候什么教室有什么牛B课,记在手机中的待办事项中,到时候到那个教室去旁听。旁听的乐趣就在于,你可以去学任何你想学的东西,不用交作业,不用怕点你名,不用记笔记,不用考试,只需要挂个耳朵在那儿听牛B东西就行了。前天一大早就被兔子叫起来,跟着一起去旁听了一节数理逻辑。
    课程内容很简单,毕竟也才只讲了两周,一切都是很基础的。老师讲得很好,对联结词、命题公式、真值表等概念都说得很细致,即使完全没接触过这方面东西的人也能弄明白。作为信科的专业课,老师也简单提到了SAT问题:给定一串由AND, OR, NOT, 逻辑变量和括号组成的表达式,是否能给变量取值使得整个表达式为真?如果存在这样的“成真赋值”,我们就称表达式是一个“可满足式”。最简单的例子,p∧q就是可满足的,把p、q都取真即可;p∧(¬p)就不可满足,该式无论如何都为假。判断一个逻辑表达式是否可满足是一个经典的NPC问题,目前除了枚举之外还没有更好的算法。
    还有一种逻辑表达式,不管初始值是什么,整个式子恒为真。例如,p∨(¬p)就是永真式。看起来,判定一个式子永真比判定一个式子可满足似乎要困难得多,因为前者比后者要强得多。而事实却是,这两个问题可以(在多项式的时间内)相互转化,它们在复杂程度上并无区别。如果你找到了一种可满足式判定算法,你便立即拥有了永真式判定算法。换句话说,你的算法若能找出一个成真赋值,你就能利用该算法立即得出该式所有赋值结果是否都为真。这个问题的问法很有艺术性,它有意屏蔽掉了永假式判定这一桥梁。事实上,一个表达式要么可满足要么永假,而从永假到永真只有一步之遥——只需要在最前面加一个“非”即可。也就是说,如果有一个程序,它能告诉我逻辑表达式A是否可满足,那么我就把¬A输进去:如果它说¬A不可满足,意即¬A的任何赋值结果均为假,反过来A就是永真的;如果它说¬A可以满足,意即程序找到了¬A的一个成真赋值,反过来便成为了A永真的一个反例。

Read more…

数学思维游戏两则:Gabriel喇叭、世界末日论

    看到新词就上一下Wikipedia确实是一个好习惯。前一篇日志的那个pdf里作者提到了Gedankenexperiment(Thought experiment),上Wikipedia一查果然学到了牛B的新东西。好多物理定律其实完全是由思维实验推导出来的,难以置信仅仅是思考竟然就能得出物理世界遵从的各种法则。经典的物理思维实验有Newton大炮、Galileo斜塔实验、Schrödinger的猫猫、Maxwell的妖怪等等。还有,Turing机也是一个伟大的思维实验。

   
    数学上的不少悖论(特别是涉及到维度和无穷的悖论)都是相当有趣的思维实验。Gabriel喇叭是y=1/x在[1,+∞)上的图象沿x轴旋转一周所形成的旋转体。这个简单的三维图形有一个奇特的性质:它的表面积无穷大,却只有有限的体积。为了证实这一点,只需注意到:
   
    Gabriel喇叭会导出一个非常诡异的悖论:如果你想用涂料把Gabriel喇叭的表面刷一遍,你需要无穷多的涂料;然而把涂料倒进Gabriel喇叭填满整个内部空间,所需要的涂料反而是有限的。
    有网友一定会问,那有没有什么二维图形,面积有限大,周长却无限长呢?答案是肯定的,Koch雪花就是这样一个经典的例子。不过,通过分形构造出来的这类图形似乎并不存在涂料悖论,因为递归到一定深度时分形图形的尺度将小于表面涂料的厚度,因此表面大小不能永无止境地算下去,涂满表面所需的涂料不再是无穷多。当考虑到涂料厚度时,原先的悖论也可以解释清楚了:填充内部空间仅仅涂满了图形的内表面,一旦考虑到涂料的厚度,它和外表面的区别就出来了。

Read more…

一个与矩形剖分有关的命题(三):诡异的微积分证明

如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。

    在这个命题的所有常见的证明方法中,我总觉得这个证明是最诡异的。真不知道第一个想出这个证明方法的人是怎么思考出来的。把矩形放在平面直角坐标系上,左下角对齐原点(0,0)。考虑函数e^(2 · pi · i · (x+y))在每个小矩形上的积分(展开并分离变量分别积分):
    

    显然,这个式子等于0当且仅当(x1-x0)和(y1-y0)中至少一个是整数(也即至少有一边的长度是整数)。考虑函数在整个大矩形上的积分,它可以拆成各个小矩形上的积分的和,因此结果仍然是0。这说明,大矩形至少有一条整数长的边。

经典证明:pi^2是无理数

    Proofs from THE BOOK的第六章相当精彩,这一章循序渐进地介绍了多个无理性证明。先证明e是无理数,证明方法和高数课本上的基本相同;试图用类似的办法证明e^2也是无理数时,这一章的内容开始牛B了起来,一些巧妙的变换就让原来的办法继续适用于e^2的证明;加上一些更有趣的技巧,我们还能继续证明e^4也是无理数;当证明对除0外的所有有理数r,e^r都是无理数时,全章达到了高潮。
    这一章还提到了pi^2是无理数的证明方法。这个证明建立在Ivan Niven于1947年提出的“pi是无理数”的经典证明的基础上:仅仅是在原证明过程中加了一些微妙的变化就得到了pi^2也是无理数的结论。注意到,“pi^2是无理数”是一个比“pi是无理数”更强的结论。由于有理数的平方还是有理数,因此证到了pi^2是无理数也就说明了pi必然是无理数;但反过来却不行,因为无理数的平方不一定也是无理数,比如根号2的平方就不是无理数。

    证明过程用到了一个函数,其中n是一个任取的大于等于1的常数。可以想像,这个函数的分子部分展开后是一个关于x的整系数多项式,最低次数为n,最高次数为2n。我们将用到这个函数的两个性质:首先,当0<x<1时,显然有0 < f(x) < 1/n!;其次,函数f及其任意阶导数在x=0和x=1处都是整数。为了证明后一个结论,首先注意到当x=0时,不管是多少阶的导数,除了常数项以外其余项都是0;常数项只可能在n<=k<=2n时出现(k表示k阶导数),但此时它等于一个整系数乘以k!/n!,显然也是个整数。另外,由于f(x)=f(1-x),根据复合函数的微分法我们立即得到对任意x都成立,当然也就有

Read more…