数学之美:Marden定理

    如果叫我说出一个我最喜欢的数学定理,之前我可能会说 Monge 定理;不过现在,我可能会说 Marden 定理了:

         
 
设 p(z) 是一个复数域上的三次多项式, z1 、 z2 、 z3 是 p(z) 的三个根,它们在复平面上不共线。那么,在这个复平面上存在唯一的椭圆,使得它与三角形 z1z2z3 的各边都相切,并且都切于各边的中点处。并且,这个椭圆的两个焦点是 p'(z) 的两根。

    读完这个结论以后,你一定会被数学之美深深地打动。这个结论出现在了 Morris Marden 于 1945 年发表的一篇论文里,因而被 Dan Kalman 称为 Marden 定理。 Marden 本人则认为,这个结论最早是由 Jörg Siebeck 在 1864 年发现并证明的。下面我们简单地来证明一下这个结论,证明过程出自 Dan Kalman 在 2008 年发表的获奖论文 An Elementary Proof of Marden’s Theorem

Read more…

如果对Heron公式求导的话

    Heron 公式是一个已知三角形三边长便能直接求出其面积的经典公式。把三角形的三边长分别记作 a 、 b 、 c ,令三角形的半周长 p = (a + b + c) / 2 ,则三角形的面积可以用 Heron 公式 S = √p(p – a)(p – b)(p – c) 求出。如果把 p = (a + b + c) / 2 代入式子,得到的公式其实也挺对称的: S = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。

    现在,我们把这个公式看作是一个关于 c 的函数: f(c) = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。它的导数是多少?

    注意到,利用平方差公式,根号内的式子可以进一步整理为 ((a + b)2 – c2)(c2 – (a – b)2) ,它的导数是 – 2c(c2 – (a – b)2) + 2c((a + b)2 – c2) = 4c(a2 + b2 – c2) 。因而,整个原函数的导数就是 c(a2 + b2 – c2) / (2 · √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) ) 。

      

    有趣的是,当 a 、 b 、 c 满足勾股定理的关系 a2 + b2 = c2 时,导数值正好为 0 。这是为什么? Heron 公式的导数的零点和勾股定理有什么联系呢?

Read more…

难倒犹太人的11个数学问题

    这个并不是标题党。很多年以前,要想进入莫斯科国立大学的数学系,你必须通过四项入学考试;头两个都是数学考试,一个笔试,一个面试。在面试中,学生和考官都是一对一的,考官可以自由向学生提出任何他喜欢的问题。考官们都准备了很多“棺材问题”,这些问题的答案非常简单,但由于思路太巧妙了,以至于学生很难想到。考官便可以以“你连这个都没想到”为理由,光明正大地拒绝学校不想要的人(主要是犹太人)。这个 Blog 之前就曾经介绍过这样的问题

    最近网上的一篇文章介绍了 21 个这样的“棺材问题”,其中有些这个 Blog 以前讲过的经典问题,但也有不少我第一次见到的好题。我选取了 11 个比较有意思的问题,在这里和大家分享。

Read more…

生成函数的妙用:平均抛掷多少次硬币才会出现连续两个正面?

    在一篇老日志中,我提到了一个经典的概率问题:平均需要抛掷多少次硬币,才会首次出现连续两个正面?它的答案是 6 次。它的计算方法大致如下。

    首先,让我们来考虑这样一个问题: k 枚硬币摆成一排,其中每一枚硬币都可正可反;如果里面没有相邻的正面,则一共有多少种可能的情况?这可以用递推的思想来解决。不妨用 f(k) 来表示摆放 k 枚硬币的方案数。我们可以把这些方案分成两类:最后一枚硬币是反面,或者最后一枚硬币是正面。如果是前一种情形,则我们只需要看前 k – 1 枚硬币有多少摆法就可以了;如果是后一种情形,那么倒数第二枚硬币必须是反面,因而这种情形下的方案数就取决于前 k – 2 枚硬币的摆放方案数。因此我们得到, f(k) = f(k – 1) + f(k – 2) 。由于摆放一枚硬币有两种方案,摆放两枚硬币有三种方案,因而事实上 f(k) 就等于 Fk+2 ,其中 Fi 表示 Fibonacci 数列 1, 1, 2, 3, 5, 8, …的第 i 项。

    而“抛掷第 k 次才出现连续两个正面”的意思就是,最后三枚硬币是反、正、正,并且前面 k – 3 枚硬币中正面都不相邻。因此,在所有 2k 种可能的硬币正反序列中,只有 Fk-1 个是满足要求的。也就是说,我们有 F1 / 4 的概率在第二次抛币就得到了连续两个正面,有 F2 / 8 的概率在第三次得到连续两个正面,有 F3 / 16 的概率在第四次得到连续两个正面⋯⋯因此,我们要求的期望值就等于:

     

Read more…

谬证大全:1+1≠2的n种可能

    最近看到几个有趣的数学谬证,想写下来与大家分享;结果写到这个又想到那个,一写就写个没完,于是想到干脆做一篇谬证大全,收集各种荒谬的证明。
    如果你有什么更棒的“证明”,欢迎来信与我分享,我会更新到这篇日志中。我的邮箱是 matrix67 at tom.com ,或者 gs.matrix67 at gmail.com 。

1=2?史上最经典的“证明”

    设 a = b ,则 a·b = a^2 ,等号两边同时减去 b^2 就有 a·b – b^2 = a^2 – b^2 。注意,这个等式的左边可以提出一个 b ,右边是一个平方差,于是有 b·(a – b) = (a + b)(a – b) 。约掉 (a – b) 有 b = a + b 。然而 a = b ,因此 b = b + b ,也即 b = 2b 。约掉 b ,得 1 = 2 。

    这可能是有史以来最经典的谬证了。 Ted Chiang 在他的短篇科幻小说 Division by Zero 中写到:

There is a well-known “proof” that demonstrates that one equals two. It begins with some definitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equals two. Hidden inconspicuously in the middle is a division by zero, and at that point the proof has stepped off the brink, making all rules null and void. Permitting division by zero allows one to prove not only that one and two are equal, but that any two numbers at all—real or imaginary, rational or irrational—are equal.

    这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以 a – b 的,因为我们假设了 a = b ,也就是说 a – b 是等于 0 的。

Read more…