跨越千年的RSA算法

    数论,数学中的皇冠,最纯粹的数学。早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的思维游戏中。直到计算机诞生之后,几千年来的数论研究成果突然有了实际的应用,这个过程可以说是最为激动人心的数学话题之一。最近我在《程序员》杂志上连载了《跨越千年的 RSA 算法》,但受篇幅限制,只有一万字左右的内容。其实,从数论到 RSA 算法,里面的数学之美哪里是一万字能扯完的?在写作的过程中,我查了很多资料,找到了很多漂亮的例子,也积累了很多个人的思考,但最终都因为篇幅原因没有加进《程序员》的文章中。今天,我想重新梳理一下线索,把所有值得分享的内容一次性地呈现在这篇长文中,希望大家会有所收获。需要注意的是,本文有意为了照顾可读性而牺牲了严谨性。很多具体内容都仅作了直观解释,一些“显然如此”的细节实际上是需要证明的。如果你希望看到有关定理及其证明的严格表述,可以参见任意一本初等数论的书。把本文作为初等数论的学习读物是非常危险的。最后,希望大家能够积极指出文章中的缺陷,我会不断地做出修改。

======= 更新记录 =======

2012 年 12 月 15 日:发布全文。
2012 年 12 月 18 日:修改了几处表达。
2021 年 9 月 13 日:根据 Chang 的指正做了修改。

======== 目录 ========

(一)可公度线段
(二)中国剩余定理
(三)扩展的辗转相除
(四)Fermat 小定理
(五)公钥加密的可能性
(六)RSA 算法

Read more…

趣题:寻找隐藏的公共秘密

    刚刚看到一道智力题,颇有些意思,说来给大家听听。我把题意稍微改了一下,原题中的 XX 侠是一个(不太容易解释的) lynch mob 。

    某座城市里发生了一起命案,已经确定凶手是 8 个嫌疑犯之一。经过很多可靠的调查,城南和城北的两名警探各自独立地把嫌疑犯的名单缩减到了两个人。现在,两名警探正在通电话,他们试图对比一下彼此的调查结果。如果他俩的嫌疑犯名单中正好只有一处重合,他们就能确定出凶手的身份了。但问题是,这座城市里有一个伸张正义、凌驾于法律之上的 XX 侠,他正在窃听两名警探的通话。如果他从中获知了凶手的身份,他将在警方实施拘捕之前先杀死凶手。
    现在, XX 侠已经知道了那 8 个嫌疑犯是谁,但不知道两名警探各自都把目标锁定在了哪两个人上。这两名警探之前从未见过面,这通电话是他们俩第一次进行交流。他们俩能成功地确定凶手的身份,而又不让 XX 侠知道凶手是谁吗?
    (当然,这里我们不允许使用那些基于数论的公钥加密体系,不然题目就没啥意思了)

Read more…