UyHiP趣题:用最少的称重次数验证硬币的重量

    这是一个非常有趣的问题,它出自 UyHiP May 2013 的谜题。

    假设你有 n 枚外观完全相同的硬币,它们的重量分别为 1g, 2g, 3g, …, ng 。有意思的是,这一次,你已经知道了各枚硬币的重量,而且你也已经把重量值标在了这些硬币上。但是,由于我不知道各枚硬币的重量,因此我希望你能向我证明,你所标的重量值是正确的(我知道这些硬币的重量是从 1 克到 n 克,我只是不知道哪个硬币对应哪个重量)。

    你唯一能用的工具就是一架天平。每一次,你可以任意选择一枚或多枚硬币,放在天平的左侧,再从剩下的硬币中任意选择一枚或多枚硬币,放在天平的右侧(注意,你只能在天平上放硬币,不能放别的东西)。一个有意思的问题是,为了向我证明你所标的重量值都是对的,你最少需要使用多少次天平?

    显然,为了证明 n 枚硬币的重量标签的正确性,我们最多需要称 n – 1 次。先把硬币 1 放在左边,把硬币 2 放在右边,让对方看到硬币 1 确实比硬币 2 要轻。接下来,向对方验证硬币 2 确实比硬币 3 更轻,硬币 3 确实比硬币 4 更轻,等等。称完 n – 1 次后,我们就相当于给出了 n 枚硬币的轻重顺序,因而它们只有可能分别是 1 克 、 2 克 、 3 克……。

    我们还能做得更好吗?不妨让我们看看 n 比较小的情况。例如,当 n = 4 的时候,利用上述方法可以 3 次完成验证,那么只用 2 次可以完成验证吗?仔细一想,你会发现真的可以!其中一种方法就是,先把硬币 1 和硬币 2 放在左边,把硬币 4 放在右边。由于两枚硬币的重量之和小于第三枚硬币,这只可能是 1 + 2 < 4 ,因此对方会相信,左边两枚硬币分别是 1 和 2 ,右边那枚硬币是 4 ,没放上去的那枚硬币是 3 。对方唯一不知道的就是,在左边两枚硬币中,究竟谁是 1 ,谁是 2 。于是,我们只需要再称一下硬币 1 和硬币 2 ,问题就解决了。

    不妨把证明 n 枚硬币重量标签的正确性最少需要的称重次数记作 B(n) 。我们的问题就是:判断 B(n) 是以什么级别增长的。

Read more…

经典证明:星际争霸是NP-hard的

    今天看到这里给出了一个“星际争霸是 NP-hard 问题”的一个证明。具体地说,给定一个初始布局(包括地图、双方已有资源、双方已有建筑、双方已有兵力),判断其中一方是否能获胜,这个问题是 NP-hard 的。当然,考虑到即时战略游戏的复杂性,这个结论并不出人意料;真正有趣的,则是如何巧妙地利用游戏中的元素,构造出极其精巧的初始局面,从而转化成某个已知的 NP-complete 问题。下面是原文中给出的证明。这个证明有没有什么漏洞?你还能想到哪些别的证明方法?欢迎在下面留言一同分享。

Read more…

新闻二则:P≠NP有望得证 魔方问题告破

    昨天的消息:一位 HP 的研究员 Vinay Deolalikar 宣称自己证明了 NP 问题,得出了 P≠NP 的结论。 P 是否等于 NP ,这是计算机科学领域中最困难的问题之一,也是意义最深远的问题之一,长期以来一直备受争议。如果这个问题获得解决,将会在各个科学领域中引起轰动。 Vinay Deolalikar 的整个证明有 100 多页,详细的论文可以在这里看到:

      http://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf

    Stanford 的博士后 randomwalker 看完证明后表示,很多迹象表明,这个证明很有可能是正确的

     ---------------------------

    今天早晨的消息: Morley Davidson 、 John Dethridge 、 Herbert Kociemba 和 Tomas Rokicki 宣称,他们已经利用计算机,完美地解决了魔方问题。他们验证了,任何一种魔方的初始状态都可以在 20 步以内解出。他们将 43,252,003,274,489,856,000 种初始状态分为了 2,217,093,120 组,再利用对称性和集合覆盖将规模缩小到了 55,882,296 组。他们的程序可以在 20 秒左右求解出一组问题的解法,最终利用 Google 提供的强大的计算机,彻底解决了魔方问题。
    利用组合数学,我们能够证明,存在一种魔方初始状态,它需要至少 18 步才能解决。 1995 年, Michael Reid 找到了一种最少需要 20 步才能获解的魔方初始状态,因而将魔方问题的下界提高到了 20 。此后,数学家们猜想,任意给定一个魔方的初始状态,最多 20 步就能解决。 2008 年, Tomas Rokicki 和 John Welborn 证明了,任意一个魔方初始状态都可以在 22 步以内解决。 2010 年 7 月,这个上界终于降低到了 20 ,从而完成了对魔方最优解问题数十年来的探索。
    详细的研究成果见这里:

      http://www.cube20.org/
 

假如P=NP,世界将会怎样?

    在计算机复杂度理论中,P问题指的是能够在多项式的时间里得到解决的问题,NP问题指的是能够在多项式的时间里验证一个解是否正确的问题。虽然人们大多相信P问题不等于NP问题,但人们目前既不能证明它,也不能推翻它。P是否等于NP是计算机科学领域中最突出的问题,在千禧年七大难题中排在首位。科学家们普遍认为P≠NP是有原因的。让我们来看一看,如果哪一天科学家证明了P=NP,寻找一个解和验证一个解变得同样容易,那这个世界将会变得怎样?

 
    已知的NPC难题将全部获解,这将瞬间给各个科学领域都带来革命性的进展。整数规划、01规划、背包问题全部获解,运筹学将登上一个全新的高度;数据库的串行化、多处理器调度等问题也随之解决,大大提高了计算机的性能。同时,空当接龙、扫雷、数独等经典游戏也由于获得了多项式的算法而在很大程度上失去了意义。
    算法研究方向将发生全面转移。对算法的研究可能会转向围棋等NP-Hard问题。算法设计的学问与“NP问题统一解”的关系正如小学应用题与列方程解题的关系一样,将成为一种纯粹锻炼思维的游戏。

    一些新型的自动编程语言将出现,并将逐渐取代传统的编程语言。这种新型编程语言扮演着一个“判定性/最优化问题万能解决器”的角色。在新的编程语言中,你只需要用代码指明输入数据与输出数据的关系,而无需关心计算输出数据的步骤。只要这种关系是多项式时间内可计算的,编译器将自动找到解法。在新型编程语言的支持下,人们唯一需要考虑的是,如何把实际问题转化成数学模型。

Read more…

停机问题、Chaitin常数与万能证明方法

    高中一次英语课上,英语老师问我们,如果你有机会乘坐时光机回到过去,你想利用这次机会来干啥。“人上一百,形形色色”这句老话得到了完美的验证。什么“回去看看四大美女”呀、“看看金字塔是怎么建造的”呀、“回到三年前的那个风雨交加的夜晚握住她的手深情地告诉她其实我不想让你离开我你知道你走了之后我有多么痛苦吗”之类的东西,各种稀奇古怪的想法都被我们说了个遍。我还记得当时我说的啥——一个无比实用的雕虫小技。我说,我就想回到一个星期前,然后去买彩票。发明一个新东西并不是关键,关键是你怎么去使用它。
    最奇怪的幻想总是来自于最奇怪的需求。大家有过这种经历吗?看到自己写的程序运行了半天都还没有任何结果,于是开始纠结,到底是再等一会儿呢还是强行终止了检查一下看程序写错没;犹豫了半天决定杀掉进程后,检查了半天又发现程序没有写错。于是开始怨念,早知道程序没有死循环的话刚才就多等一会儿了。此时,你会突然开始幻想,有没有什么编译器能够事先告诉你你的程序是否会无限运行下去?虽然编程判断一段代码是否会无限执行下去很可能会相当的困难,但我们仍然不排除会有某个天才程序员想出了一个比三角恋爱更加复杂的算法,花它五年的功夫为他心爱的编译器写出了这样一个强大的插件。为什么不可能呢?这个东西看上去似乎比时光旅行机更现实一些。或许我们会在某个科幻电影中看到,一个程序员在黑黢黢的屏幕上输入了几个数,敲了一下回车,然后屏幕上立即用高亮加粗字体显示“警告:该输入数据会导致程序无限运行下去,确定执行?(Y/N)”。如果有一天,这一切真的成为了现实,那么你能利用这个玩意儿来做些什么实用的、有价值的事情?如果我说你能靠这玩意儿发大财你相信么?

Read more…