实分析中的反例(上)

    我对各种违背直觉的函数构造特别有兴趣,看看这里你就知道我对这些特殊函数有多痴迷了。因此,当我发现竟然有专门收集各种特殊函数的数学书时,可以想象我的心情有多激动。我试着以“反例”为关键字在图书馆进行检索,借了一大堆实分析数学书。这些书都已经很老了,封皮烂了又烂,已经修修补补重装了两三次封皮。翻翻这些老书,不由得对老一辈的学者和作家表示由衷的崇敬;虽然文字、排版都不出彩,但书的容量极大,内容也很实在。
    废话不多说了,让我们来欣赏一下书里的一些精彩篇章吧。

Read more…

平面上处处稠密但在平行于坐标轴的直线上无处稠密的点集

    我一直很喜欢有各种惊异性质的奇怪函数,比如阶梯状的连续函数只在一点连续的函数任意小的区间所对应的值域都是整个实数域的函数等等。在这里面,最令人吃惊的是恐怕要数在平面上处处稠密的单值函数(其实前面那个函数显然也有这样的性质)。这样的函数打破了一维和二维之间的界线,启发人们重新思考稠密性的意义。不过,有人提到,这两个函数之所以在平面上稠密,是因为它们在平行于x轴的直线上都是稠密的。我们自然开始设想,有不有可能在平面上找到这样一个点集,它在平面上处处稠密,但在任意一条平行于坐标轴的直线上都无处稠密呢?
    这是可以办到的。为了简便起见,我们只考虑平面区域[0,1]×[0,1]上的点集。让我们考虑由所有满足以下条件的点(x,y)所组成的点集:x和y都是有限小数,并且小数位数是相同的。例如,点(0.0516, 0.1025)就属于这个点集,但(0.23, 0.1001)就不属于这个点集,(1/3, π/6)就更不属于该点集了。显然,对于任何一个有限小数x’,直线x=x’上都只有有限多个点;类似地,对于任意一个有限小数y’,直线y=y’上都只有有限多个点。因此,该点集在所有平行于坐标轴的直线上都无处稠密。有趣的是,该点集在整个平面区域内却处处稠密。在任意小的区间x’-ε≤x≤x’+ε,y’-ε≤y≤y’+ε中,总存在一对小数位数相同的x和y。我们只需要写出一个比ε更小的有限小数λ,然后取(x’+λ, y’+λ)(只保留和λ相同的位数),则该点必然在前面所说的范围内。

Read more…

构造函数使得任意小的区间所对应的值域都是整个实数域

    首先呢,让我们来一个牛B函数大回顾。这下我不知道要赚多少的PV。你能否构造一个函数f(x),使得:

  它是一个阶梯状的连续函数?
  它是除常函数之外的没有最小正周期的周期函数?
  该函数只在一点连续?
  该函数在[0,1]和(0,1)之间形成一一对应?
  该函数某一点导数为正,但该点邻域不构成单增区间?
  平面上任意小的圆内均包含函数上的点?

    另外还有一些可能是众所周知(所以没在Blog里写过)的函数,比如处处连续但处处不可导的函数在有理点处处不连续在无理点处处连续的函数等等。
    好了,现在呢,又一个牛B东西出现了。你能不能想出这样一个函数f,它的定义域和值域都是R,并且对于任意小的区间l=(u,v),这个函数都能把(u,v)满射到整个R上。换句话说,是否存在这样的函数f(x),对于任意一个实数t以及任意一个区间(u,v),总存在一个x满足u<x<v且f(x)=t。

Read more…

是否存在只在一点连续的函数?

    有人突然问到我,有不有可能构造一个函数,它只在一个点连续,其余地方处处不连续。函数构造是一个非常诱人的问题,我非常喜欢那些具有各种不可思议的性质的函数,那些令人吃惊的特性往往违背了大多数人的直觉和常识,这些都是茶余饭后闲谈的绝佳话题。前面提到的这个问题就是一个很有趣的问题。永远不要想当然地以为只在一点连续的函数不存在,各种怪相函数可谓无奇不有。仔细考虑了一下,我想这个函数应该和Dirichlet函数有点联系吧,毕竟很多与连续性相关的函数其原型都是Dirichlet函数,比如满足“无理点处处连续、有理点处处不连续”的爆米花函数就有Dirichlet函数的影子。然后我就突然想到,我彻底火星了,而且还是超级乌龙火星——这个玩意儿我自己还在Blog上写过,只是当时我并没注意到罢了。我曾经在描述Hilbert曲线时写到:

    你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个最小正周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗?
    …………
    有了Cauchy定义,回过头来看前面的问题,我们可以推出:第一个函数在任何一点都不连续,因为当ε< 1时,δ范围内总存在至少一个点跳出了ε的范围;第二个函数只在x=0处是连续的,因为此时不管ε是多少,只需要δ比ε小一点就可以满足ε-δ定义了。

    类似地,我们可以扩展出只在两个点、只在三个点连续的函数。只需把有理点上的f(x)=x换成f(x)=(x-a)(x-b)(x-c),我们便得到一个只在a, b, c三点连续的函数。

趣题:构造一个[0,1]到(0,1)的一一映射

    网友Gestorm在TopLanguage里问到,如何构造一个[0,1]到(0,1)的一一映射。两个集合的势显然相等,它们之间一定有一个一一对应的函数。注意到(0,1)是[0,1]的子集,利用Cantor-Bernstein-Schroeder定理,只要我们能找到一个从[0,1]到(0,1)的单射函数,我们便找到了两个集合间的双射函数(因为上述定理的证明是构造性的)。这非常简单,例如f(x)表示x与0.5的平均数即可。考虑上述定理的Julius König证明,我们立即得到一个[0,1]到(0,1)的一一映射:f(0)=1/4, f(1/4)=3/8, f(3/8)=7/16, …,不断进行(x+1/2)/2的迭代;同样地,f(1)=3/4, f(3/4)=5/8, f(5/8)=9/16, …;对于其它所有未定义到的x,f(x)=x。这个函数显然是双射的。
    仔细观察这个函数。当你领会到这个函数的真谛时,你突然恍然大悟:我可以用类似地办法弄出无穷多个[0,1]到(0,1)的一一映射。例如,最简单的便是f(0)=1/2, f(1)=1/3;然后f(1/2)=1/4, f(1/3)=1/5, f(1/4)=1/6, …, f(1/i)=1/(i+2);对于其它未定义的x,f(x)=x。
    查看TopLanguage的原帖可以看到一些类似的结果。