Which Way Did the Bicycle Go 趣题选(上)

    我找到了这道经典智力题的出处。它似乎来源于一本叫做 Which Way Did the Bicycle Go 的书。这本书又是一本超赞的趣题集,里面有很多我没有见过的趣题妙解。我找到了这本书的电子版,并且传到了自己网站上,与大家分享一下。大家可以点击这里下载。阅读器可以在这里找到。

    我整理出了个人认为比较精彩的题目。如果你没有时间翻遍整本书的话,看看我精选出的这些题目也是一个不错的选择。

 

1. 给定 △ABC ,对于平面上的任意一点 X ,它属于点集 S 当且仅当线段 BC 上存在一点 D 使得 △ADX 是等边三角形。点集 S 是什么样子的?

 

答案:两条线段,它由线段 BC 绕 A 点顺时针或逆时针旋转 60 度而得。这是因为,给定 A 点和 X 点,则 D 点的位置可以由 X 点绕 A 旋转 60 度得到的。既然 D 点在 BC 上,那么显然 X 点就应该在 BC 绕 A 旋转 60 度得到的线段上。

  

Read more…

Mathematica真的什么都能求出来吗?

    Mathematica 强大的符号计算和化简能力相信会让不少人震撼不已。输入 Sum[1/n^2, {n, 1, ∞}] , Mathematica 竟然知道它等于 π^2/6 。我不禁问自己, Mathematica 真的什么都能化简出来吗?今天,我偶然遇到一个简单的表达式, Mathematica 竟然不知道它的精确值。

    在 Mathematica 中输入 Cot[π/2] , Mathematica 会告诉你它等于 0 ;在 Mathematica 中输入 Cot[π/4] , Mathematica 会告诉你它等于 1 ;但在 Mathematica 中输入 Cot[π/8] , Mathematica 返回的却还是一个 Cot[π/8] ,并没有给出它的值。而 Cot[π/8] 并不是一个复杂到无法用四则运算和平方开方表达出来的数。在一个边长为 1 的正八边形中,每条边的所对应的“圆心角”为 2π/8 = π/4 ,因此“圆周角” α 就等于 π/8 。由下图我们可以轻易看出, Cot[π/8]=√2+1 。

Read more…

玩转内接多边形(三):任意凸多边形内均存在内接菱形

    当我们进一步考虑内接菱形时,情况有了一些变化——证明任意多边形内均存在内接菱形没有前几个问题那么容易了。但我们可以轻易证明一个弱化版的命题:任意凸多边形内均存在内接菱形。下面将给出这个命题的两种不同的证明,它们都相当经典。

 
  

    证明 1 :考虑凸多边形内的一条水平线段由上至下扫过,这条线段的中点所形成的轨迹就是一条连接凸多边形最顶端与最底端的折线段。类似地,考虑一条从左至右移动的竖直线段,它的中点就构成了从凸多边形最左端到最右端的连线。显然,这两条连线会有一个交点,也就是说我们找到了两条互相垂直且中点重合的线段,它们对应的四个端点显然就是一个菱形的四个顶点。

Read more…

玩转内接多边形(二):任意多边形内均存在内接矩形

    紧接着,我们想问:是否任意一个多边形内都能找到内接矩形呢?有意思的是,答案也是肯定的。但此时,前一节我们用到的两种证明方法现在都派不上用场了,我们需要用到一些全新的手段。下面这个证明真可谓是巧妙到了诡异的地步,真不知是谁想出来的。

    对于多边形边界上的任意两点 A(x1, y1) 、 B(x2, y2) ,作出它们在三维空间中所对应的点 ((x1+x2)/2, (y1+y2)/2, √(x1-x2)^2+(y1-y2)^2) 。换句话说,把多边形放在水平面 z=0 上,对于多边形上的每一组无序点对 A 、 B ,在线段 AB 中点的正上方 |AB| 处作一个点。再把这个多边形本身加进去,我们就得到了一个三维空间中的封闭曲面。

    可以看到,图中所示的例子中,这个曲面与自身相交了。这就表明,存在多边形边界上的两组点对 A 、 B 和 C 、 D ,它们满足线段 AB 和 CD 的中点重合,并且两线段一样长。这样,四边形 ABCD 就是多边形的一个内接矩形了。下面我们将说明,这个曲面一定会与自身相交。

Read more…