连杆系统:比你想象中的更强大

    在机器时代,作为机械构造的理论工具,连杆系统曾一度成为数学界中最热门的话题。所谓连杆系统,就是一些刚性的小杆在端点处以转轴的方式相连,形成的一个机械装置。固定某些顶点的位置之后,其余的动点就能画出一些有趣的轨迹。比方说,固定线段 AB 的其中一个端点 A ,则顶点 B 将描绘出一个绕 A 点的圆周。

  

    连杆系统最激动人心的,莫过于一些简单的连杆装置能够描绘出非常复杂的曲线。例如,上面的右图就是由五根相同长度的线段构成的连杆。固定 A 、 B 两个端点后,显然 C 和 D 描绘出的都是圆弧,但 E 点的轨迹就很难以想象了。事实上, E 点的轨迹相当的诡异,需要用一些复杂的代数语言才能描述。

 

Read more…

玩转内接多边形(六):任意凸多边形内均存在内接正方形

    这一系列文章的最后,我们将证明:任意凸多边形内均存在内接正方形。事实上,这几乎是“任意凸多边形内均存在内接菱形”这一命题的直接推论。在这篇日志中,我们实际上证明了这样一个结论:在任意凸多边形中,任选一个方向 u ,总能找到一个内接菱形,它的其中一条对角线与所选方向平行。
    现在,慢慢旋转方向 u ,则所得菱形的两条对角线将连续地变化。当方向 u 旋转了 90 度后,原来的两条对角线交换了位置,换句话说两条对角线的长度之差变号了。因此,在方向 u 旋转的过程中,必然有一个时刻两条对角线的长度恰好相同,此时内接正方形也就得到了。

    可能有的读者想问了,去掉“凸多边形”这一条件,任意多边形内都存在内接正方形吗?答案是肯定的。 Square Peg 定理告诉我们,对于任意一个简单多边形,总能在上面找到四个点,使得它们恰好是一个正方形的四个顶点。定理的证明需要用到很多之前提到的类似的方法,不过更加复杂一些,这里就不再叙述了。

    最后还有一个有趣的话题想与大家分享一下。大家看到了,在一个多边形内内接等边三角形、矩形、菱形甚至正方形都是没有问题的,那么这类问题的极限在哪里?有什么图形是一个多边形内不能内接的吗?肯定是有的。下面我们证明,存在一个多边形,它不能内接正七边形。
    事实上,任何三角形内都不能内接正七边形。考虑一个正七边形的外接圆,它与三角形最多只有六个交点(因为一条线段和一个圆最多只能产生两个交点),因此正七边形显然是不能内接于三角形内的。

玩转内接多边形(五):任意多边形内均存在内接菱形

    我们曾经用两种巧妙的方法证明了这样一个命题:任意多边形内均存在内接菱形。利用上次讲到的登山引理,我们可以证明一个更强的命题:任意多边形内均存在内接菱形。

    证明的大致思路如下:在多边形外任选一点 u 。把多边形上离 u 最近的点记作 y ,把多边形上离 u 最远的点记作 z 。 y 和 z 这两个点就把整个多边形的边界分成了两个部分。

  

Read more…

用一张日落照片估算出地球的半径

    你相信吗,仅仅利用一张日落的照片,你就能得出地球的半径大小! Princeton 大学的 Robert Vanderbei 在最近的一篇论文中对一张摄于密歇根湖的日落照片进行了分析,不但证实了地球是圆的,还依据照片上的内容对地球半径进行了估算。我把计算的大致过程向大家描述一下,供大家膜拜。

  

    事情的起因就是上面这张很平常的日落照片,以及这样一个大家平时并没有太在意的问题:太阳露出水面的部分应该是一个标准的弓形,但为什么在日出日落时,我们所看到的太阳是一个橄榄球一样的形状?大家或许会很快想到,发光体的下半部分其实是日光反射在水面上造成的。随之产生的是另一个问题:为什么它的下半部分要比上半部分小一些呢?

Read more…

Which Way Did the Bicycle Go 趣题选(下)

 

23. 一些硬币互不重叠地放在桌上。四色定理告诉我们,若要对硬币进行染色,使得挨在一起的硬币颜色不同的话,最多只需要四种颜色就可以了。存在至少需要四种颜色的构造吗?

 

答案:存在。如图,若只允许三种颜色的话, A 的颜色必须与所有阴影硬币颜色相同, B 的颜色也必须与所有阴影硬币颜色相同, A 、 B 将会同色。

  

Read more…