在这个 Blog 的一篇很老很老的文章里,我曾经讲过一个非常有趣的几何作图问题,这个问题最早是由 D. Pedoe 教授在 1983 年提出的:给定 A 、 B 两点,只用一个生锈的圆规(没有直尺),如何找出一个点 C ,使得 A 、 B 、 C 恰好构成一个等边三角形?所谓“生锈的圆规”,也就是一个被卡住的圆规,它的两脚张角不能改变。我们不妨假设,它只能画出单位大小的圆。1987 年,我国的侯晓荣等人成功地解决了这个问题,并借助复平面理论得到了很多一般的结果,其研究成果《锈规作图论》发表在了《中国科学技术大学学报》上。
锈规作出等边三角形的方法非常漂亮:利用锈规作图,我们能构造出两点之间由单位长线段构成的折线段,进而实现平行四边形的构造(已知其中三个点,能够只用锈规找出第四个点),进而完成等边三角形的构造。刚才提到的那篇“很老很老的文章”里有详细的描述,继续阅读之前,强烈建议先看一看。
事实上,D. Pedoe 教授还提过另外一个问题:给定 A 、 B 两点,只用锈规能否作出 A 、 B 连线的中点?注意,由于没有直尺,线段 AB 实际上是画不出的。要想“隔空”找出线段的中点,显然并不容易。
前几天翻起张景中的《数学家的眼光》,就是为了查阅这个问题的解决方法。《数学家的眼光》一书中详细描述了锈规作图找中点的方法,在这里和大家分享。
Read more…