如果对Heron公式求导的话

    Heron 公式是一个已知三角形三边长便能直接求出其面积的经典公式。把三角形的三边长分别记作 a 、 b 、 c ,令三角形的半周长 p = (a + b + c) / 2 ,则三角形的面积可以用 Heron 公式 S = √p(p – a)(p – b)(p – c) 求出。如果把 p = (a + b + c) / 2 代入式子,得到的公式其实也挺对称的: S = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。

    现在,我们把这个公式看作是一个关于 c 的函数: f(c) = √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) / 4 。它的导数是多少?

    注意到,利用平方差公式,根号内的式子可以进一步整理为 ((a + b)2 – c2)(c2 – (a – b)2) ,它的导数是 – 2c(c2 – (a – b)2) + 2c((a + b)2 – c2) = 4c(a2 + b2 – c2) 。因而,整个原函数的导数就是 c(a2 + b2 – c2) / (2 · √(a + b + c)(a + b – c)(a – b + c)(- a + b + c) ) 。

      

    有趣的是,当 a 、 b 、 c 满足勾股定理的关系 a2 + b2 = c2 时,导数值正好为 0 。这是为什么? Heron 公式的导数的零点和勾股定理有什么联系呢?

Read more…

趣题:只用一把带有两条平行边的直尺作图

    在下面的问题中,你不能使用圆规,只能使用直尺作图。不过,你的直尺拥有两条平行边,你可以在作图时同时使用它们。你需要充分利用直尺的这个特点,完成下面几个作图任务。

      1. 作出已知角的角平分线;
      2. 作出已知线段的中点;
      3. 作出已知圆的圆心;
      4. 过已知点作已知直线的平行线。

    假设你的直尺是无限长的。直尺的宽度是固定不变的。直尺不能用来度量长度。

Read more…

UyHiP趣题:按照盒子的三边长之和来计费有没有漏洞?

    今天的趣题来自 UyHiP 今年十月的趣题

    许多快递公司都依据物件的长、宽、高三边之和来收费,一些航空公司也要求托运行李的三边长相加不能超过某个限制。那么是否有人想过,有没有可能把一个三边之和较大的盒子装进一个三边之和较小的盒子里,从而骗取更低的费用呢?有人会说,恐怕不行吧,长宽高之和更大的盒子体积不也应该更大一些吗?不见得。比方说,盒子 A 的长宽高分别是 10 、 10 、 10 ,盒子 B 的长宽高分别是 9 、 9 、 12.1 。盒子 B 的三边长之和显然比盒子 A 要大,但体积只有 980.1 ,比前者要小近 20 个单位。那么,为什么就不能把盒子 B 沿斜线方向塞进盒子 A 呢?有人会敏锐地发现,在上面的例子中,盒子 A 的体对角线长为 17.3205 ,但盒子B的对角线长度达到 17.5616 ,显然无法完全放进盒子 A 里。不过且慢,我也能举出这样的例子,三边和更大的盒子其体积和对角线都比小的盒子的要小。盒子 A 的长宽高分别为 10 、 10 、 20 ,盒子 B 的长宽高分别为 7.1 、 16.5 、 16.5 。盒子 B 的长宽高之和比盒子 A 大,体积为 1932.98 ,对角线长度比前者小大约 0.1 。看来,为了解决这个问题,我们还需要从一些更巧妙的方面入手。

Read more…

难倒犹太人的11个数学问题

    这个并不是标题党。很多年以前,要想进入莫斯科国立大学的数学系,你必须通过四项入学考试;头两个都是数学考试,一个笔试,一个面试。在面试中,学生和考官都是一对一的,考官可以自由向学生提出任何他喜欢的问题。考官们都准备了很多“棺材问题”,这些问题的答案非常简单,但由于思路太巧妙了,以至于学生很难想到。考官便可以以“你连这个都没想到”为理由,光明正大地拒绝学校不想要的人(主要是犹太人)。这个 Blog 之前就曾经介绍过这样的问题

    最近网上的一篇文章介绍了 21 个这样的“棺材问题”,其中有些这个 Blog 以前讲过的经典问题,但也有不少我第一次见到的好题。我选取了 11 个比较有意思的问题,在这里和大家分享。

Read more…

千万别学数学:最折磨人的数学未解之谜(二)

    数学之美不但体现在漂亮的结论和精妙的证明上,那些尚未解决的数学问题也有让人神魂颠倒的魅力。和 Goldbach 猜想、 Riemann 假设不同,有些悬而未解的问题趣味性很强,“数学性”非常弱,乍看上去并没有触及深刻的数学理论,似乎是一道可以被瞬间秒杀的数学趣题,让数学爱好者们“不找到一个巧解就不爽”;但令人称奇的是,它们的困难程度却不亚于那些著名的数学猜想,这或许比各个领域中艰深的数学难题更折磨人吧。

    今年年初时,我曾经写过一篇名为 千万别学数学:最折磨人的数学未解之谜 的文章,选取并翻译了 Mathematical Puzzles 一书中提到的未解数学谜题。不过,毕竟 Mathematical Puzzles 一书容量有限,没法把所有折磨人的数学猜想都收录进来。后来,我慢慢收集了更多漂亮的数学猜想,今天又见到 MathOverflow 的这个问题,足以凑成一篇新的文章了。于是写下来,和大家一同分享。

Read more…