大家或许还记得 Quake III 里面的一段有如天书般的代码,其中用到的神秘常量 0x5F3759DF 究竟是怎么一回事,着实让不少人伤透了脑筋。今天,我见到了一段同样诡异的代码。
下面这个位运算小技巧可以迅速给出一个数的二进制表达中末尾有多少个 0 。比如, 123 456 的二进制表达是 1 11100010 01000000 ,因此这个程序给出的结果就是 6 。
unsigned int v; // find the number of trailing zeros in 32-bit v
int r; // result goes here
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];
熟悉位运算的朋友们可以认出, v & -v 的作用就是取出右起连续的 0 以及首次出现的 1 。当 v = 123 456 时, v & -v 就等于 64 ,即二进制的 1000000 。怪就怪在,这个 0x077CB531 是怎么回事?数组 MultiplyDeBruijnBitPosition 又是什么玩意儿呢?