什么是算法:如何寻找稳定的婚姻搭配

引言 什么是算法
如何寻找稳定的婚姻搭配

 
    据说,一本书开篇就直言不讳地谈起两性的话题,这本书准能畅销。有幸的是,在众多可以用来引入“算法”的话题中,我最喜欢的那一个还真与两性有那么一些关系。假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚。如果你已经知道这些女孩在每个男人心目中的排名,以及男孩们在每个女孩心中的排名(1),你应该怎样为他们牵线配对呢?
    最好的配对方案当然是,每个人的另一半正好都是自己的“第一选择”。这虽然很完美,但绝大多数情况下都不可能实现。比方说,男 1 号的最爱是女 1 号,而女 1 号的最爱不是男 1 号,这两个人的最佳选择就不可能被同时满足。如果出现了好几个男人的最爱都是同一个女孩儿的情况,这几个男人的首选也不会同时得到满足。当这种最为理想的配对方案无法实现时,怎样的配对方案才能令人满意呢?
    其实,找的对象太完美不见得是个好事儿,和谐才是婚姻的关键。如果男 1 号和女 1 号各自有各自的对象,但男 1 号觉得,比起自己现在的对象,女 1 号更好一些;女 1 号也发现,在自己心目中,男 1 号的排名比现男友更靠前一些。这样一来,这两人就可能会发生外遇,最后扔下各自现在的对象,一起私奔了——因为这个结果对他们两人都更好一些。在一种男女配对的方案中,如果出现了这种情况,我们就说婚姻搭配是不稳定的。作为一个红娘,你深深地知道,对象介绍得不好没有关系,就怕婚姻关系不稳定。给客户牵线配对时,虽然不能让每个人都得到最合适的,但婚姻搭配必须得是稳定的。换句话说,对于每一个人,在他心目中比他当前的伴侣更好的异性,都不会认为他也是一个更好的选择。现在,我们的问题就是:稳定的婚姻搭配总是存在吗?应该怎样寻找出一个稳定的婚姻搭配?

Read more…

计算机与拼图游戏:探讨一个交互式问题

    似乎MM都很喜欢拼图游戏。如果MM过生日你不知道送她什么,送她一副拼图是一个不错的选择(事实上原来我也曾干过这事)。如果你失恋了,或者挂科了,或者这个月没饭钱了,或者怀疑自己的性取向,感到很郁闷的时候,静下心来玩一玩拼图游戏可以让你暂时忘掉烦恼。当你最终完成整个拼图时,你会有前所未有的成就感。当然,只有那些有耐心的人才觉得拼图有趣,像我这样的人肯定拼个十几二十分钟就觉得烦了。计算机搞久了的人往往都很没耐心,同一个操作反复执行的次数多了就觉得很烦,心里总会想这种机械操作交给傻B计算机去做该多省事啊。有时我会想,计算机是否有什么牛B算法可以用来解决拼图问题。今天我们要研究的是,如何把拼图游戏描述成一个信息学问题,计算机是否有更高效的算法来解决这个问题。
    传统的拼图一共有w*h个正方形小块,最终将拼成一个w*h的矩形图案。我们大致有以下两种依据来确定一个小块的位置:根据这一小块上的图案来确定它在整幅图片中的位置,或者从形状上观察这一小块可以和其它哪些块拼接。于是,拼图游戏变成了这样一种交互式的问题:允许你询问某一块是否在指定的位置,或者某两块是否相连,你如何尽早地完成整个拼图。具体地说,你可以:

  • 询问拼块A是否在(x,y)上,交互库返回yes/no
  • 询问拼块A和拼块B是否相连,交互库返回yes/no

    有时候,你并不能把拼图完全当作一个顶点最大度为4的无向图。多数情况下两个拼块只能按某一个方向上的某一种顺序相连。为了更贴近拼图游戏的真实情况,我们可以假定,对于第二个问题如果返回的是yes,则交互库还会告诉你A应该接在B的什么方向。现在的问题是,完成整个拼图最少需要多少次询问?
    假如拼图共有n块,询问的次数不会超过O(n^2)。对于每一个拼块,我都像傻B一样挨着挨着询问“它是不是在这里”,O(n^2)次询问可以保证我完成整副拼图。我们希望知道,是否有算法可以使用O(nlogn)甚至更少的询问次数?

    答案是否定的。对于拼图问题,计算机并没有英明到哪里去,它也只能像傻B一样一个一个去试。我们下面将证明,不管你怎么努力,询问次数再怎么也不会低于O(n^2)。首先我们需要说明的是,问题2实际上并不能带给我们多大的帮助。

      
    如上图,我们把整个拼图划分成一个一个的“十字架”,并且挖掉每个十字架正中间的那个格子(深灰色的格子)。注意到关于这种划分的三个重要性质:

  • 每个浅灰色的格子最多与一个深灰色的格子相邻
  • 任何两个深灰色的格子都不相邻
  • 深灰色的格子共有n/5个(可能有常数级别的偏差)

    现在,假如整个拼图里只剩这些被挖掉的深灰色格子还没确定,其它的格子上都已经放好了正确的拼块。再换句话说,在拼图游戏过程中,拼块是否应放在浅灰色的格子里,若可以则应该放在哪个格子,以及浅灰色格子之间的邻接状态都是已经知道的了,只要是不涉及深灰色格子的信息,你要什么我就给你什么。此时,我们只剩下n/5个格子(仍然是O(n)个格子),并且询问1与询问2变得完全等价;你要问拼块A和拼块B是否相邻,还不如直接问拼块是否应放在某个洞里。于是,问题变为这样,只凭借询问1来确定O(n)个拼块的位置需要多少次询问。我们下面证明,O(n^2)次询问是必须的。
    考虑一个二分图,左边n个顶点表示n个拼块,右边n个顶点表示拼图上残留的n个洞。现在,我只能询问指定的两顶点间是否有边,只有当交互库回答了n次yes后拼图才算完成。那么,作为交互库,你应该尽可能返回对游戏者不利的信息,让整个局面往最坏的方向发展。如果叫你来写这个交互库,你该怎么写?容易想到,只要有可能,我都返回no;除非某个时候一旦我再返回一次no,所有没被问过的边和返回过yes的边所组成的二分图不存在一个完全匹配时,我才可能返回yes。我们需要一个二分图存在完全匹配的充分条件来支持我们的这个算法。
    考虑如下定理:如果一个二分图左边右边各有n个顶点,每个顶点都与对面至少n/2个顶点相连,则这个二分图一定存在一个完全匹配。定理的证明很简单。König定理告诉我们,二分图的最大匹配数应该等于最小点覆盖集,而一个图的最小点覆盖与最大点独立集是互补的,它们的和始终等于顶点数|V|(在这里|V|=2n)。因此我们只需要证明,上述二分图的最大点独立集不会超过n。假如我在左边选的顶点数不超过n/2个,则右边最多也只能选n/2个顶点(左边任一个点都已经使右边至少n/2个点废了);假如我左边选的顶点数超过了n/2个,则右边的顶点一个都不能选(右边每个点都连接了左边至少n/2个点,任选一个都会导致冲突)。总之,最大点独立集不可能超过n,但n显然是可以达到的(取同一边的所有点),那么最小点覆盖集也就是n,即二分图存在完全匹配。
    有了这个定理,下面我就好办了:任何时候,只要每个顶点你都有半数以上的边没问过,我就可以放心大胆的回答no(因为这些没问过的边总可以组成一个完全匹配);一旦某个时刻有一个顶点被问过了n/2次,那么我就随便找一个完全匹配,把这个点“亮”出来,告诉你这个点应该和哪个点匹配(不计询问次数),然后把这两个匹配了的顶点从图中删去,继续刚才的操作。每次删除一对顶点都会顺带着删掉与它们相连的至少k/2条问过的边,其中k表示当时左边右边各剩下k个顶点。删掉了多少边就表示你曾问过了多少边,因此完成整个拼图你总共问过至少n/2 + (n-1)/2 + … + 2/2 + 1/2条边,这个数量显然是O(n^2)的。

做人要厚道
转贴请注明出处
参考资料:http://www.brand.site.co.il/riddles/200710q.html

二分图最大匹配的König定理及其证明

    如果你看不清楚第二个字母,下面有一个大号字体版本:

二分图最大匹配的König定理及其证明

    本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。
    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案:
    1. 什么是二分图;
    2. 什么是二分图的匹配;
    3. 什么是匈牙利算法;(http://www.matrix67.com/blog/article.asp?id=41)
    4. König定理证到了有什么用;
    5. 为什么o上面有两个点。

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在这里写一下这个定理的证明,希望对大家有所帮助。

    假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
    匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
    首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)。因此,最后我们圈起来的点与匹配边一一对应。
    其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
    最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。
    证完了。
  
Matrix67原创
做人要厚到 转贴请注明出处

二分图最大匹配问题匈牙利算法

    研究了几个小时,终于明白了。说穿了,就是你从二分图中找出一条路径来,让路径的起点和终点都是还没有匹配过的点,并且路径经过的连线是一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现。找到这样的路径后,显然路径里没被匹配的连线比已经匹配了的连线多一条,于是修改匹配图,把路径里所有匹配过的连线去掉匹配关系,把没有匹配的连线变成匹配的,这样匹配数就比原来多1个。不断执行上述操作,直到找不到这样的路径为止。