或许你从小就一直在思考的两个算术问题

你是否很小就注意到了下面这两个有趣的算术现象?这两个简单的算术谜题是否一直都困扰着你?今天,大家终于有机会解开谜团了。

问题一: 2 加 2 等于 4 , 2 乘 2 也等于 4 。还有其他的整数对,它们的和与积也相等吗?

我们要求的就是 m + n = mn 的整数解。方程可以变为 mn – m – n + 1 = 1 ,也就是 (m – 1)(n – 1) = 1 。由于 m 、 n 都是整数,因此 m – 1 和 n – 1 也都是整数。两个整数之积为 1 ,只有两种情况——这两个数都是 1,或者这两个数都是 -1 。前者对应了 m = 2, n = 2 ,后者解出来则是 m = 0, n = 0 。如果把 (0, 0) 看作平凡解(或者如果我们把问题限制在正整数范围)的话,非平凡解就只有 (2, 2),没有其他的了。

Read more…

等待的时间比你想象的更久

    最近忙于写学年论文,一直没时间更新 Blog 。不过,我却并没有停止在网上闲逛的习惯。这几天会慢慢把最近看到的有意思的东西写下来。今天学到的一个比较有趣的东西就是:平均等待时间往往大于平均间隔时间的一半。

    比方说,有这么一趟公交车,平均每 10 分钟发一班车,但具体的发车时间是很不固定的。如果你在某个时刻来到车站,等到下一班车平均要花多久呢?很多人或许都觉得,平均等待时间应该是 5 分钟,毕竟平均间隔时间是 10 分钟嘛。然而事实上,平均等待时间是大于 5 分钟的。这是因为,10 分钟的发车间隔只是一个平均值,实际间隔有时是几分钟,有时是十几分钟。如果你出现在车站的时刻,正好位于几分钟的间隔中,你的平均等待时间显然就会小于 5 分钟;但如果你出现在车站的时刻,正好位于较长的间隔中,那么你的平均等待时间就会大于 5 分钟。关键就在这里:你出现在车站的时刻,更有可能落在了较长的发车间隔中。因而,平均等待时间会偏向于大于 5 分钟的情况。

    那么,如果公交车发车的时间足够随机,概率均等地分布在时间轴上(假设平均间隔仍是 10 分钟),那么当你来到车站时,平均需要多久才能等到公交车呢?答案或许很出人意料——平均等待时间就是 10 分钟。下面我们就来证明这一点。

Read more…

数学之美:垂心的各种优雅的性质

    下面这些文字来源于我在初三数学竞赛课的一份讲义。这节课的主题本是四点共圆,但由此引出了三角形中很多漂亮的性质,让人深感数学之美。在此整理出来,献给所有还在中学读书的读者,以及早已远离中学数学的 80 后。不管大家是否喜爱数学,想必都会被这些奇妙的结论所震撼。

    

    三角形的奇迹首先表现在各个“心”上:三角形内部的每一组有几何意义的线条都交于一点。三条角平分线交于一点,这个点就叫做三角形的“内心”,它是三角形内切圆的圆心;三边的中垂线交于一点,这个点就叫做三角形的“外心”,它是三角形外接圆的圆心;三角形的三条中线也交于一点,这个点叫做三角形的“重心”,因为它真的就是这个三角形的重心。用力学方法可以很快推导出,它位于各中线的三等分点处。这些心将会在本文后面某个出人意料的地方再次出现。

    三角形的三条高也不例外——它们也交于一点,这个点就叫做三角形的垂心。

    垂心看上去很不起眼,但深入研究后即会冒出很多奇妙的结论。由于两个斜边重合的直角三角形将会产生出共圆的四点,因此画出三角形的三条高后,会出现大量四点共圆的情况,由此将挖掘出一连串漂亮的结论。让我们先来看一个简单而直接的结论:

Read more…

幸福结局问题,以及一个幸福的结局

    今天是我第一次听说这个故事。

    1933 年,匈牙利数学家 George Szekeres 还只有 22 岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——Paul Erdős 大神。不过当时,Erdős 只有 20 岁。

    在一次数学聚会上,一位叫做 Esther Klein 的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。Szekeres 和 Erdős 等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。

    

Read more…

趣题:不动点与线性代数

    假设 X 、 Y 是两个有限集合,f:X→Y 和 g:Y→X 是两个函数。求证:复合函数 g∘f 和 f∘g 拥有相同数量的不动点(也就是说 g(f(x)) = x 和 f(g(y)) = y 的解的个数相同)。

    下面先提供一个“正常”的解法。观察函数 g∘f 的不动点,可以看出它有以下两个性质:首先,如果某个 x 是 g∘f 的不动点,即 x = g(f(x)) ,那么 f(x) = f(g(f(x))),这就说明 f(x) 是 f∘g 的一个不动点;另外,如果 x1 和 x2 是 X 中两个不同的不动点,则函数 f 不可能把它们映射到 Y 中的同一个元素,否则 g 没办法把它分别还原成 x1 和 x2 。结合上面两点可以看出, f∘g 中的不动点至少和 g∘f 的一样多。

    同理,考察 f∘g 的不动点,可知 g∘f 的不动点至少和 f∘g 的一样多。这就说明了 g∘f 和 f∘g 拥有相同数量的不动点。

Read more…