一个与矩形剖分有关的命题(五):数学归纳法

如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。     我们首先把每个小矩形都分割成单位长或单位宽的长条。这样的话,大矩形里就只有两种小矩形:宽为1的(图(2)中的蓝色矩形)和高为1的(图(2)中的红色矩形)。我们对蓝色矩形的个数施归纳。随便选择一个蓝色的矩形(例如图(2)中的阴影矩形)。增加它的高度,让它“穿过”它头顶上的红色矩形(把它正上方的红色矩形截成左右两段),直到这根竖条状矩形的顶端碰到了另一个蓝色矩形的底端。把那个矩形作为新的操作对象,继续增加其高度(并可能再次更换“当前矩形”),直到达到整个大矩形的上边界。我们用同样的方法让最初所选的阴影矩形向下“生长”到大矩形的下边界。注意到在此过程中,蓝色矩形始终保持着单位宽度,红色矩形始终保持着单位高度。整个过程结束后,红色矩形变多了,但蓝色矩形的个数不变。此时我们得到了一条上下贯穿整个大矩形的蓝色矩形链。把它们擦掉,将右半部分左移一个单位,重新拼成一个大矩形。新的大矩形高度不变,宽度减一(因此原来的整数边还是整数,非整数边仍然不是整数),并且最关键的是蓝色矩形的个数减少了。反复进行这样的操作,总有一个时候大矩形里只剩下红色的矩形(则原大矩形高度显然为整),或者某次操作后所有矩形都被去掉了(则原大矩形宽度为整)。     借用这种方法我们还可以得到一个有点搞笑的反证法。假设大矩形的横边竖边都不是整数。每一步操作后,这两个边仍然是非整数,这表明大矩形里不可能只剩一种颜色的小矩形,于是我们可以无限制地调用上面的操作。最后的结果是:我们得到了一个用整数长或整数宽的小矩形拼接而成的一个横边竖边都小于1的大矩形!这显然是荒谬的。 参考资料:http://www.cut-the-knot.org/Curriculum/Algebra/IntRectRobinson.shtml

一个与矩形剖分有关的命题(四):简便的数论证明

如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。     不假,利用数论知识我们真的可以证明这个和数论八杆子打不着的题目。证明的关键就在于,质数有无穷多个。给定一个满足要求的大矩形,如果你宣称它的每条边都不是整数,它们都至少多出了大小为ε的“零头”。那么,我就找出一个足够大的质数p,使得1/p < ε,然后说明有一条边的长度除去整数部分后的“零头”不会超过1/p。这样的话,至少有一边恰好是整数长才行。     仍然是把大矩形放在平面直角坐标系上,左下角对齐原点(0,0)。考虑所有形如(i/p, j/p)的点所形成的点阵(其中i, j均为整数)。我们需要把整个点阵平移到一个合适位置,使得点阵中没有点恰好落在小矩形的边界上。这总是可以办到的,例如我们算出每个小矩形的横边到点阵中离它最近的点的距离,取所有这些最近距离中最小的非0的值,然后竖直方向上移动一个比这还小的距离;另一个方向亦是如此。注意到每个小矩形内部所含的点数都是两个数的乘积,由于其中至少有一个数是p的倍数,因此每个小矩形内都有p的倍数个点。那么,整个大矩形所含的点的个数(即每个小矩形所含点数之和)也是p的倍数。大矩形内的所有点的个数也是两个数的乘积,然而p是质数,因此两个数中至少一个是p的倍数(数论的一个基本结论)。那么,对应的那条边就应该是整数长,并且最多有1/p的误差。 (三)(四)两种证明均来自http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/solutions/May1999.html

一个与矩形剖分有关的命题(三):诡异的微积分证明

如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。     在这个命题的所有常见的证明方法中,我总觉得这个证明是最诡异的。真不知道第一个想出这个证明方法的人是怎么思考出来的。把矩形放在平面直角坐标系上,左下角对齐原点(0,0)。考虑函数e^(2 · pi · i · (x+y))在每个小矩形上的积分(展开并分离变量分别积分):          显然,这个式子等于0当且仅当(x1-x0)和(y1-y0)中至少一个是整数(也即至少有一边的长度是整数)。考虑函数在整个大矩形上的积分,它可以拆成各个小矩形上的积分的和,因此结果仍然是0。这说明,大矩形至少有一条整数长的边。

一个与矩形剖分有关的命题(二):直观的图论证明

       接下来,我们用图论方法来证明:一个由小矩形拼接而成的大矩形,若每个小矩形都有至少一条整数长的边,则大矩形也有至少一条整数长的边。考虑图中每个矩形的每个顶点,把它们作为图G的顶点集(相邻矩形重合的顶点并作一个点);对于每一个小矩形,把它整数边方向的两对顶点分别用一条边连接起来(相邻矩形公共边上的重边不合并)。如果哪个小矩形四条边都是整数,无妨随意把它当作横向整数边的或者纵向整数边的,连接任一种方向上的边。这样的话,每个矩形恰好产生两条边。注意这个图的一些很显然的性质:度为1的点只有4个(大矩形的四个角),其余的顶点的度都是偶数(只能是2或者4)。下面,我们把这个矩形放在平面坐标系上,大矩形的左下角对齐原点(0,0)。从原点开始沿着图G的边走(每条边最多走一次,不走走过的边),显然走到的每个点都满足这个性质:它的两个坐标均为整数。但我们的出发点是一个度为1的点,在走到另一个度为1的点之前,我们遇到的所有顶点的度都是偶数。因此只要没走到另一个度为1的点,我们就不可能走死。但是,图G总的边数有限,总有一个时候我们将不能再走。因此,这次旅程的终点必然落在另一个度为1的点上。这个终点是大矩形的另一个角,它的两个坐标值均为整数。命题得证。     以上两个证明均来自http://www.cs.toronto.edu/~mackay/rectangles/

一个与矩形剖分有关的命题(一):巧妙的初等证明

    今天才听说了这样一个有趣的命题:如果一个矩形可以分割为若干个小矩形,每个小矩形都有至少一边为整数长,则原矩形同样有至少一个长度为整数的边。换句话说,用至少有一边的长度是整数的小矩形拼成一个大矩形,大矩形也有至少一条整数长的边。这个命题看似简单但却很难证明,更准确地说应该是很难想到证明方法。而有趣就有趣在,这个命题的证明方法出奇的多,从图论方法到数论方法,每个证明都相当巧妙。          我们所要介绍的第一个证明是我觉得最巧妙的证明方法。证明的关键在于下面这个引理:像国际象棋棋盘一样对整个平面黑白染色,那么与两坐标轴平行放置且至少一边长为偶数的矩形一定覆盖了相同面积的黑色区域和白色区域。原因很简单,看上图,该矩形中的每一个(长度为偶数个单位的)横条显然都覆盖了相同面积的黑白两色区域。